Deep Brain Stimulation (DBS) surgeries are not new, although they were only granted approval in the U.S. by the U.S. Food and Drug Administration (FDA) in 2002 for advanced Parkinson’s Disease (PD). In 2016, DBS surgery was approved for earlier stages of PD. This does not mean that DBS surgery, generally considered minimally invasive, does not come without commensurate risks. The Mayo Clinic identifies DBS as a serious and potential risky procedure, whereby those eligible must carefully weigh pros and cons. The aim of this paper is to provide a general overview of deep brain stimulation surgery and to present the findings of available informational resources on 14 hospital and medical center web sites that were reviewed, pertaining to surgical procedures and policies: pre-operative to post-operative. The article focuses on critiquing available educational DBS materials and their adequacy in addressing potential risks of DBS surgery. The findings indicate that hospital informational resources on the DBS surgical technique reaffirm each other’s educational materials and that they positively inform patient decision-making. These factors can be linked to better post-operative recovery. However, the materials provided by the hospitals overemphasize the positive aspects of DBS with relatively little detail about potential side effects. This article also outlines the potential short-term and long-term side effects of DBS surgery as identified by the DBS educational literature found on the hospital web sites reviewed.
more »
« less
Modeling recovery curves with application to prostatectomy
Summary In many clinical settings, a patient outcome takes the form of a scalar time series with a recovery curve shape, which is characterized by a sharp drop due to a disruptive event (e.g., surgery) and subsequent monotonic smooth rise towards an asymptotic level not exceeding the pre-event value. We propose a Bayesian model that predicts recovery curves based on information available before the disruptive event. A recovery curve of interest is the quantified sexual function of prostate cancer patients after prostatectomy surgery. We illustrate the utility of our model as a pre-treatment medical decision aid, producing personalized predictions that are both interpretable and accurate. We uncover covariate relationships that agree with and supplement that in existing medical literature.
more »
« less
- Award ID(s):
- 1737673
- PAR ID:
- 10213969
- Date Published:
- Journal Name:
- Biostatistics
- Volume:
- 20
- Issue:
- 4
- ISSN:
- 1465-4644
- Page Range / eLocation ID:
- 549 to 564
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Ciliates are powerful unicellular model organisms that have been used to elucidate fundamental biological processes. However, the high motility of ciliates presents a major challenge in studies using live-cell microscopy and microsurgery. While various immobilization methods have been developed, they are physiologically disruptive to the cell and incompatible with microscopy and/or microsurgery. Here, we describe a Simple Microfluidic Operating Room for the Examination and Surgery ofStentor coeruleus(SMORES). SMORES uses Quake valve-based microfluidics to trap, compress, and perform surgery onStentoras our model ciliate. Compared with previous methods, immobilization by physical compression in SMORES is more effective and uniform. The mean velocity of compressed cells is 24 times less than that of uncompressed cells. The compression is minimally disruptive to the cell and is easily applied or removed using a 3D-printed pressure rig. We demonstrate cell immobilization for up to 2 h without sacrificing cell viability. SMORES is compatible with confocal microscopy and is capable of media exchange for pharmacokinetic studies. Finally, the modular design of SMORES allows laser ablation or mechanical dissection of a cell into many cell fragments at once. These capabilities are expected to enable biological studies previously impossible in ciliates and other motile species.more » « less
-
ABSTRACT The presented methodology results in an optimal portfolio of resilience‐oriented resource allocation under weather‐related risks. The pre‐event mitigations improve the capacity of the transportation system to absorb shocks from future natural hazards, contributing to risk reduction. The post‐event recovery planning results in enhancing the system's ability to bounce back rapidly, promoting network resilience. Considering the complex nature of the problem due to uncertainty of hazards, and the impact of the pre‐event decisions on post‐event planning, this study formulates a nonlinear two‐stage stochastic programming (NTSSP) model, with the objective of minimizing the direct construction investment and indirect costs in both pre‐event mitigation and post‐event recovery stages. In the model, the first stage prioritizes a bridge group that will be retrofitted or repaired to improve the system's robustness and redundancy. The second stage elaborates the uncertain occurrence of a type of natural hazard with any potential intensity at any possible network location. The damaged state of the network is dependent on decisions made on first‐stage mitigation efforts. While there has been research addressing the optimization of pre‐event or post‐event efforts, the number of studies addressing two stages in the same framework is limited. Even such studies are limited in their application due to the consideration of small networks with a limited number of assets. The NTSSP model addresses this gap and builds a large‐scale data‐driven simulation environment. To effectively solve the NTSSP model, a hybrid heuristic method of evolution strategy with high‐performance parallel computing is applied, through which the evolutionary process is accelerated, and the computing time is reduced as a result. The NTSSP model is implemented in a test‐bed transportation network in Iowa under flood hazards. The results show that the NTSSP model balances the economy and efficiency on risk mitigation within the budgetary investment while constantly providing a resilient system during the full two‐stage course.more » « less
-
The functioning of interdependent civil infrastructure systems in the aftermath of a disruptive event is critical to the performance and vitality of any modern urban community. Post-event stressors and chaotic circumstances, time limitations, and complexities in the community recovery process highlight the necessity for a comprehensive decision-making framework at the community-level for post-event recovery management. Such a framework must be able to handle large-scale scheduling and decision processes, which involve difficult control problems with large combinatorial decision spaces. This study utilizes approximate dynamic programming algorithms along with heuristics for the identification of optimal community recovery actions following the occurrence of an extreme earthquake event. The proposed approach addresses the curse of dimensionality in its analysis and management of multi-state, large-scale infrastructure systems. Furthermore, the proposed approach can consider the cur-rent recovery policies of responsible public and private entities within the community and shows how their performance might be improved. A testbed community coarsely modeled after Gilroy, California, is utilized as an illustrative example. While the illustration provides optimal policies for the Electrical Power Network serving Gilroy following a severe earthquake, preliminary work shows that the methodology is computationally well suited to other infrastructure systems and hazards.more » « less
-
The functioning of interdependent civil infrastructure systems in the aftermath of a disruptive event is critical to the performance and vitality of any modern urban community. Post-event stressors and chaotic circumstances, time limitations, and complexities in the community recovery process highlight the necessity for a comprehensive decision-making framework at the community-level for post-event recovery management. Such a framework must be able to handle large-scale scheduling and decision processes, which involve difficult control problems with large combinatorial decision spaces. This study utilizes approximate dynamic programming algorithms along with heuristics for the identification of optimal community recovery actions following the occurrence of an extreme earthquake event. The proposed approach addresses the curse of dimensionality in its analysis and management of multi-state, large-scale infrastructure systems. Furthermore, the proposed approach can consider the cur-rent recovery policies of responsible public and private entities within the community and shows how their performance might be improved. A testbed community coarsely modeled after Gilroy, California, is utilized as an illustrative example. While the illustration provides optimal policies for the Electrical Power Network serving Gilroy following a severe earthquake, preliminary work shows that the methodology is computationally well suited to other infrastructure systems and hazards.more » « less