skip to main content


Search for: All records

Award ID contains: 1739990

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Delay-Differential Equations (DDEs) are the most common representation for systems with delay. However, the DDE representation has limitations. In network models with delay, the delayed channels are typically low-dimensional and accounting for this heterogeneity is challenging in the DDE framework. In addition, DDEs cannot be used to model difference equations. In this paper, we examine alternative representations for networked systems with delay and provide formulae for conversion between representations. First, we examine the Differential-Difference (DDF) formulation which allows us to represent the low-dimensional nature of delayed information. Next, we consider the coupled ODE-PDE framework and extend this to the recently developed Partial-Integral Equation (PIE) representation. The PIE framework has the advantage that it allows the H∞-optimal estimation and control problems to be solved efficiently using the recently developed software package PIETOOLS. In each case, we consider a very general class of networks, specifically accounting for four sources of delay - state delay, input delay, output delay, and process delay. Finally, we use a scalable network model of temperature control to show that the use of the DDF/PIE formulation allows for optimal control of a network with 40 users, 80 states, 40 delays, 40 inputs, and 40 disturbances. 
    more » « less
  2. The Partial Integral Equation (PIE) framework provides a unified algebraic representation for use in analysis, control, and estimation of infinite-dimensional systems. However, the presence of input delays results in a PIE representation with dependence on the derivative of the control input, u˙. This dependence complicates the problem of optimal state-feedback control for systems with input delay – resulting in a bilinear optimization problem. In this paper, we present two strategies for convexification of the H∞-optimal state-feedback control problem for systems with input delay. In the first strategy, we use a generalization of Young's inequality to formulate a convex optimization problem, albeit with some conservatism. In the second strategy, we filter the actuator signal – introducing additional dynamics, but resulting in a convex optimization problem without conservatism. We compare these two optimal control strategies on four example problems, solving the optimization problem using the latest release of the PIETOOLS software package for analysis, control and simulation of PIEs. 
    more » « less
  3. Inspired by the recently proposed Partial Integral Equality(PIE) representation for linear delay systems, this paper proposes a fuzzy-PIE representation for T-S fuzzy systems with delays for the first time. Inspired by the free-weighting matrix technique, this paper introduces the free-weighting Partial Integral (PI) operators. Based on the novel representation and free-weighting PI operators, the stability issue is investigated for the T-S fuzzy systems with delays. The corresponding conditions are given as Linear Partial Inequality (LPI) and can be solved by the MATLAB toolbox PIETOOLS. Compared with the existing results, our method has no need of the bounding technique and a large amount of matrix operation. The numerical examples show the superiority of our method. This paper adds to the expanding field of LPI approach to fuzzy systems with delays. 
    more » « less
  4. Appeared in the proceedings of the 2021 IFAC Workshop on Time-Delay Systems This paper establishes a PIE (Partial Integral Equation)-based technique for the robust stability and H∞ performance analysis of linear systems with interval delays. The delays considered are time-invariant but uncertain, residing within a bounded interval excluding zero. We first propose a structured class of PIE systems with parametric uncertainty, then propose a Linear PI Inequality (LPI) for robust stability and H∞ performance of PIEs with polytopic uncertainty. Next, we consider the problem of robust stability and H∞ performance of multidelay systems with interval uncertainty in the delay parameters and show this problem is equivalent to robust stability and performance of a given PIE with parametric uncertainty. The robust stability and H∞ performance of the uncertain time-delay system are then solved using the LPI solver in the MATLAB PIETOOLS toolbox. Numerical examples are given to prove the effectiveness and accuracy of the method. This paper adds to the expanding field of PIE approach and can be extended to linear partial differential equations. 
    more » « less
  5. null (Ed.)
  6. null (Ed.)