skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Control of Large-Scale Delayed Networks: DDEs, DDFs and PIEs
Delay-Differential Equations (DDEs) are the most common representation for systems with delay. However, the DDE representation has limitations. In network models with delay, the delayed channels are typically low-dimensional and accounting for this heterogeneity is challenging in the DDE framework. In addition, DDEs cannot be used to model difference equations. In this paper, we examine alternative representations for networked systems with delay and provide formulae for conversion between representations. First, we examine the Differential-Difference (DDF) formulation which allows us to represent the low-dimensional nature of delayed information. Next, we consider the coupled ODE-PDE framework and extend this to the recently developed Partial-Integral Equation (PIE) representation. The PIE framework has the advantage that it allows the H∞-optimal estimation and control problems to be solved efficiently using the recently developed software package PIETOOLS. In each case, we consider a very general class of networks, specifically accounting for four sources of delay - state delay, input delay, output delay, and process delay. Finally, we use a scalable network model of temperature control to show that the use of the DDF/PIE formulation allows for optimal control of a network with 40 users, 80 states, 40 delays, 40 inputs, and 40 disturbances.  more » « less
Award ID(s):
1935453 1739990
PAR ID:
10483586
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
IFAC-PapersOnLine
Volume:
55
Issue:
30
ISSN:
2405-8963
Page Range / eLocation ID:
97 to 102
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Modern control theory provides us with a spectrum of methods for studying the interconnection of dynamic systems using input-output properties of the interconnected subsystems. Perhaps the most advanced framework for such inputoutput analysis is the use of Integral Quadratic Constraints (IQCs), which considers the interconnection of a nominal linear system with an unmodelled nonlinear or uncertain subsystem with known input-output properties. Although these methods are widely used for Ordinary Differential Equations (ODEs), there have been fewer attempts to extend IQCs to infinitedimensional systems. In this paper, we present an IQC-based framework for Partial Differential Equations (PDEs) and Delay Differential Equations (DDEs). First, we introduce infinitedimensional signal spaces, operators, and feedback interconnections. Next, in the main result, we propose a formulation of hard IQC-based input-output stability conditions, allowing for infinite-dimensional multipliers. We then show how to test hard IQC conditions with infinite-dimensional multipliers on a nominal linear PDE or DDE system via the Partial Integral Equation (PIE) state-space representation using a sufficient version of the Kalman-Yakubovich-Popov lemma (KYP). The results are then illustrated using four example problems with uncertainty and nonlinearity. 
    more » « less
  2. Recently, a broad class of linear delayed and ODE-PDEs systems was shown to have an equivalent representation using Partial Integral Equations (PIEs). In this paper, we use this PIE representation, combined with algorithms for convex optimization of Partial Integral (PI) operators to bound the H2-norm for input-output systems of this class. Specifically, the methods proposed here apply to delayed and ODE-PDE systems (including delayed PDE systems) in one or two spatial variables where the disturbance does not enter through the boundary. For such systems, we define a notion of H2-norm using an initial state-to-output framework and show that this notion reduces to more traditional concepts under the assumption of existence of a strongly continuous semigroup. Next, we consider input-output systems for which there exists a PIE representation and for such systems show that computing a minimal upper bound on the H2-norm of delayed and PDE systems can be equivalently formulated as a convex optimization problem subject to linear PI operator inequalities (LPIs). We convert, then, these optimization problems to Semi-Definite Programming (SDP) problems using the PIETOOLS toolbox. Finally, we apply the results to several numerical examples – focusing on time-delay systems (TDS) for which comparable H2 approximation results are available in the literature. The numerical results demonstrate the accuracy of the computed upper bound on the H2-norm. 
    more » « less
  3. This paper presents a novel learning-based adaptive optimal controller design for linear time-delay systems described by delay differential equations (DDEs). A key strategy is to exploit the value iteration (VI) approach to solve the linear quadratic optimal control problem for time-delay systems. However, previous learning-based control methods are all exclusively devoted to discrete-time time-delay systems. In this article, we aim to fill in the gap by developing a learning-based VI approach to solve the infinite-dimensional algebraic Riccati equation (ARE) for continuous-time time-delay systems. One nice feature of the proposed VI approach is that an initial admissible controller is not required to start the algorithm. The efficacy of the proposed methodology is demonstrated by the example of autonomous driving. 
    more » « less
  4. This paper studies the adaptive optimal control problem for a class of linear time-delay systems described by delay differential equations (DDEs). A crucial strategy is to take advantage of recent developments in reinforcement learning (RL) and adaptive dynamic programming (ADP) and develop novel methods to learn adaptive optimal controllers from finite samples of input and state data. In this paper, the data-driven policy iteration (PI) is proposed to solve the infinite-dimensional algebraic Riccati equation (ARE) iteratively in the absence of exact model knowledge. Interestingly, the proposed recursive PI algorithm is new in the present context of continuous-time time-delay systems, even when the model knowledge is assumed known. The efficacy of the proposed learning-based control methods is validated by means of practical applications arising from metal cutting and autonomous driving. 
    more » « less
  5. The Partial Integral Equation (PIE) framework provides a unified algebraic representation for use in analysis, control, and estimation of infinite-dimensional systems. However, the presence of input delays results in a PIE representation with dependence on the derivative of the control input, u˙. This dependence complicates the problem of optimal state-feedback control for systems with input delay – resulting in a bilinear optimization problem. In this paper, we present two strategies for convexification of the H∞-optimal state-feedback control problem for systems with input delay. In the first strategy, we use a generalization of Young's inequality to formulate a convex optimization problem, albeit with some conservatism. In the second strategy, we filter the actuator signal – introducing additional dynamics, but resulting in a convex optimization problem without conservatism. We compare these two optimal control strategies on four example problems, solving the optimization problem using the latest release of the PIETOOLS software package for analysis, control and simulation of PIEs. 
    more » « less