skip to main content


Search for: All records

Award ID contains: 1744500

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Aim/Purpose: The purpose of this paper is to explore the efficacy of simulated interactive virtual conversations (chatbots) for mentoring underrepresented minority doctoral engineering students who are considering pursuing a career in the professoriate or in industry. Background: Chatbots were developed under the National Science Foundation INCLUDES Design and Developments Launch Pilot award (17-4458) and provide career advice with responses from a pre-programmed database populated by renowned emeriti engineering faculty. Chatbots have been engineered to fulfill a myriad of roles, such as undergraduate student advisement, but no research has been found that addresses their use with supplemental future faculty mentoring for doctoral students.Methodology: Chatbot efficacy is examined through a phenomenological design with focus groups with underrepresented minority doctoral engineering students. No theoretical or conceptual frameworks exist relative to chatbots designed for future faculty mentoring; therefore, an adaptation and implementation of the conceptual model posited on movie recommendations was utilized to ground this study. The four-stage process of phenomenological data analysis was followed: epoché, horizontalization, imaginative variation, and synthesis.Contribution: No studies have investigated the utility of chatbots in providing supplemental mentoring to future faculty. This phenomenological study contributes to this area of investigation and provides greater consideration into the unmet mentoring needs of these students, as well as the potential of utilizing chatbots for supplementary mentoring, particularly for those who lack access to high quality mentoring.Findings: Following the data analysis process, the essence of the findings was, while underrepresented minority doctoral engineering students have ample unmet mentoring needs and overall are satisfied with the user interface and trustworthiness of chatbots, their intent to use them is mixed due to a lack of personalization in this type of supplemental mentoring relationship.Recommendations for Practitioners: One of the major challenges faced by underrepresented doctoral engineering students is securing quality mentoring relationships that socialize them into the engineering culture and community of practice. While creating opportunities for students and incentivizing faculty to engage in the work of mentoring is needed, we must also consider the ways in which to leverage technology to offer supplemental future faculty mentoring virtually. Recommendation for Researchers: Additional research on the efficacy of chatbots in providing career-focused mentoring to future faculty is needed, as well as how to enhance the functionality of chatbots to create personal connections and networking opportunities, which are hallmarks of traditional mentoring relationships.Impact on Society: An understanding of the conceptual pathway that can lead to greater satisfaction with chatbots may serve to expand their use in the realm of mentoring. Scaling virtual faculty mentoring opportunities may be an important breakthrough in meeting mentoring needs across higher education.Future Research: Future chatbot research must focus on connecting chatbot users with human mentors; standardizing the process for response creation through additional data collection with a cadre of diverse, renowned faculty; engaging subject matter experts to conduct quality verification checks on responses; testing new responses with potential users; and launching the chatbots for a broad array of users. 
    more » « less
  2. This research paper explores the potential use of chatbots (simulated interactive virtual conversations) in future faculty mentoring. In this case, a mentee asks career advice of a chatbot that draws responses from a pre-programmed database populated by renowned emeriti engineering faculty. Chatbots are being developed under the National Science Foundation INCLUDES Design and Developments Launch Pilot award (17-4458). Their efficacy for future faculty mentoring is explored through a phenomenological design grounded by the Efficacy of Chatbots for Future Faculty Mentoring conceptual framework utilizing focus groups with underrepresented minority (URM) doctoral engineering students. Chatbots were found to be effective as a supplementary mentoring option as URM doctoral students have ample unmet mentoring needs. Yet, intent to use this type of mentoring was mixed, despite high satisfaction ratings on positive user interface and perceived trustworthiness, because of the lack of personalization in this type of mentoring relationship. The preferred presentation method for this research paper is a traditional lecture, although a demonstration of the chatbot will be provided to afford session participants the opportunity to view and offer feedback on its perceived utility. 
    more » « less
  3. Presentation of embodied conversational agents as a candidate virtual supplement in virtual faculty mentoring. 
    more » « less
  4. This holistic single-case study design grounded by Sternberg’s Triarchic Theory of Intelligence explores the future of the engineering professoriate and the professional practices and personal qualities emeriti engineering faculty believe are necessary for success in academia. The emeriti faculty also share how they observed the ways in which race/ethnicity and gender, and the intersection of the two, influence the professional paths of early-career underrepresented minority engineering faculty. Findings indicate the future of the engineering professoriate will be based on faculty continuing to develop useable technology that improves the human condition. Emeriti faculty note the balance in research, teaching, and service is dependent upon one’s creative, analytical, and practical abilities; and the balance can be complicated by race/ethnicity and gender. A thorough understanding of pathways for success in the engineering professoriate has the potential to positively impact the professional trajectories of early-career faculty. 
    more » « less