Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stochastic model checking is a technique for analyzing systems that possess probabilistic characteristics. However, its scalability is limited as probabilistic models of real-world applications typically have very large or infinite state space. This paper presents a new infinite state CTMC model checker, STAMINA, with improved scalability. It uses a novel state space approximation method to reduce large and possibly infinite state CTMC models to finite state representations that are amenable to existing stochastic model checkers. It is integrated with a new property-guided state expansion approach that improves the analysis accuracy. Demonstration of the tool on several benchmark examples shows promising results in terms of analysis efficiency and accuracy compared with a state-of-the-art CTMC model checker that deploys a similar approximation method.more » « less
-
The iBioSim tool has been developed to facilitate the design of genetic circuits via a model-based design strategy. This paper illustrates the new features incorporated into the tool for DNA circuit design, design analysis, and design synthesis, all of which can be used in a workflow for the systematic construction of new genetic circuits.more » « less
-
Disease modelers have been modeling progression of diseases for several decades using tools such as Markov Models or microsimulation. However, they need to address a serious challenge; many models they create are not reproducible. Moreover, there is no proper practice that ensures reproducible models, since modelers rely on loose guidelines that change periodically, rather than well-defined machine-readable standards. The Systems Biology Markup Language (SBML) is one such standard that allows exchange of models amongst different software tools. Recently, the SBML Arrays package has been developed, which extends the standard to allow handling simulation of populations. This paper demonstrates through several abstract examples how microsimulation disease models can be encoded using the SBML Arrays package enabling reproducible disease modeling.more » « less
-
Motivation: Systems biology models are typically simulated using a single formalism such as ordinary differential equations (ODE) or stochastic methods. However, more complex models require the coupling of multiple formalisms since different biological concepts are better described using different methods, e.g., stationary metabolism is often modeled using flux-balance analysis (FBA) whereas dynamic changes of model components are better described via ODEs. The coupling of FBA and ODE frameworks results in dynamic FBA models. A major challenge is how to describe such hybrid models coupling multiple frameworks in a standardized way, so that they can be exchanged between tools and simulated consistently and in a reproducible manner. Results: This paper presents a scheme and implementation for encoding dynamic FBA models in the Systems Biology Markup Language (SBML), thereby allowing to exchange multi-framework computational models between software tools. The paper shows the feasibility of the approach using various example models and demonstrates that different tools are able to simulate the hybrid models and agree on the results. As part of this work, two independent implementations of a multi-framework simulation method for dynamic FBA have been developed supporting such models: iBioSim and sbmlutils. Availability: All materials and models are available from https://github.com/matthiaskoenig/dfba. The tools used in this project are freely available: iBioSim at http://www.async.ece.utah.edu/ibiosim and sbmlutils at https://github.com/matthiaskoenig/sbmlutils/.more » « less
An official website of the United States government

Full Text Available