skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial DNA sample preservation and possible artifacts for field-based research in remote tropical peatlands
Surveying bacterial and archaeal microbial communities in host and environmental studies requires the collection and storage of samples. Many studies are conducted in distant locations challenging these prerequisites. The use of preserving buffers is an important alternative when lacking access to cryopreservation, however, its effectivity for samples with challenging chemistry or samples that provide opportunities for fast bacterial or archaeal growth upon exposure to an aerobic environment, like peat samples, requires methodological assessment. Here, in combination with an identified optimal DNA extraction kit for peat soil samples, we test the application of several commercial and a homemade preservation buffer and make recommendations on the method that can most effectively preserve a microbiome reflective of the original state. In treatments with a non-optimal buffer or in the absence, we observed notable community shifts beginning as early as three days post-preservation lowering diversity and community evenness, with growth-driven artifacts from a few specific phyla. However other buffers retain a very close composition relative to the original state, and we described several metrics to understand some variation across them. Due to the chemical effects of preservation buffers, it is critical to test their compatibility and reliability to preserve the original bacterial and archaeal community in different environments.  more » « less
Award ID(s):
1749252
PAR ID:
10635121
Author(s) / Creator(s):
;
Publisher / Repository:
Elsevier
Date Published:
Journal Name:
Journal of Microbiological Methods
Volume:
224
Issue:
C
ISSN:
0167-7012
Page Range / eLocation ID:
106997
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Stams, Alfons J. (Ed.)
    ABSTRACT Hydrologic shifts due to climate change will affect the cycling of carbon (C) stored in boreal peatlands. Carbon cycling in these systems is carried out by microorganisms and plants in close association. This study investigated the effects of experimentally manipulated water tables (lowered and raised) and plant functional groups on the peat and root microbiomes in a boreal rich fen. All samples were sequenced and processed for bacterial, archaeal (16S DNA genes; V4), and fungal (internal transcribed spacer 2 [ITS2]) DNA. Depth had a strong effect on microbial and fungal communities across all water table treatments. Bacterial and archaeal communities were most sensitive to the water table treatments, particularly at the 10- to 20-cm depth; this area coincides with the rhizosphere or rooting zone. Iron cyclers, particularly members of the family Geobacteraceae , were enriched around the roots of sedges, horsetails, and grasses. The fungal community was affected largely by plant functional group, especially cinquefoils. Fungal endophytes (particularly Acephala spp.) were enriched in sedge and grass roots, which may have underappreciated implications for organic matter breakdown and cycling. Fungal lignocellulose degraders were enriched in the lowered water table treatment. Our results were indicative of two main methanogen communities, a rooting zone community dominated by the archaeal family Methanobacteriaceae and a deep peat community dominated by the family Methanomicrobiaceae . IMPORTANCE This study demonstrated that roots and the rooting zone in boreal fens support organisms likely capable of methanogenesis, iron cycling, and fungal endophytic association and are directly or indirectly affecting carbon cycling in these ecosystems. These taxa, which react to changes in the water table and associate with roots and, particularly, graminoids, may gain greater biogeochemical influence, as projected higher precipitation rates could lead to an increased abundance of sedges and grasses in boreal fens. 
    more » « less
  2. Alston, Jesse (Ed.)
    The field of microbial ecology is increasingly recognizing the need for methods to isolate and culture gut microbes to better understand how these microorganisms impact animal physiology, especially in mammalian hosts. Currently, there is a lack of clear methods to store microbial samples for cultivability, especially when samples are collected from the field, transported to the laboratory, and preserved under long-term storage for weeks to months compared to mere days in the biomedical field. Here, the cecal contents of groundhogs (Marmota monax) were processed and stored with or without various preservation solutions at −80 °C for at least 2 months. All microbial samples were then grown in distinct nutrient media in liquid and plate conditions and were incubated under anaerobic and aerobic environments. Treatment comparisons revealed that the samples stored in preservation solutions containing 1 or more cryoprotectants provided the greatest and most consistent bacterial densities. To test the long-term storage efficacy of the preservation solutions, we inventoried taxonomic identities and abundances of these cultures using 16S rRNA amplicon sequencing. Our findings highlight that: (1) preserved samples containing cryoprotectants exhibited the highest microbial richness and diversity and resembled the original cecal samples the most when grown under anaerobic conditions; and (2) the effect of individual animal identity was detectable in the membership of cultured communities, irrespective of preservation solutions. Our study is the first to demonstrate the importance of preservation solutions containing multiple cryoprotectants for long-term storage and further microbial culturing and novel isolation. Understanding and improving storage methods that preserve microbial physiology and conserve their compositional diversity is essential for field-collected samples useful in mammalian microbiome and culturomics studies, promoting a better comprehension of the identity and function of wild host-associated microbiomes. 
    more » « less
  3. Recovered microbial community structure is known to be influenced by sample storage conditions and nucleic acid extraction methods, and the impact varies by sample type. Peat soils store a large portion of soil carbon and their microbiomes mediate climate feedbacks. Here, we tested three storage conditions and five extraction protocols on peat soils from three physicochemically distinct habitats in Stordalen Mire, Sweden, revealing significant methodological impacts on microbial (here, meaning bacteria and archaea) community structure. Initial preservation method impacted alpha but not beta diversity, with in-field storage in LifeGuard buffer yielding roughly two-thirds the richness of in-field flash-freezing or transport from the field on ice (all samples were stored at −80 °C after return from the field). Nucleic acid extraction method impacted both alpha and beta diversity; one method (the PowerSoil Total RNA Isolation kit with DNA Elution Accessory kit) diverged from the others (PowerMax Soil DNA Isolation kit-High Humic Acid Protocol, and three variations of a modifiedPowerMax Soil DNA/RNA isolation kit), capturing more diverse microbial taxa, with divergent community structures. Although habitat and sample depth still consistently dominated community variation, method-based biases in microbiome recovery for these climatologically-relevant soils are significant, and underscore the importance of methodological consistency for accurate inter-study comparisons, long-term monitoring, and consistent ecological interpretations. 
    more » « less
  4. Microorganisms play critical roles in sea ice biogeochemical processes. However, microbes living within sea ice can be challenging to sample for scientific study. Because most techniques for microbial analysis are optimized for liquid samples, sea ice samples are typically melted first, often applying a buffering method to mitigate osmotic lysis. Here, we tested commonly used melting procedures on three different ice horizons of springtime, first year, land-fast Arctic sea ice to investigate potential methodological impacts on resulting measurements of cell abundance, photophysiology, and microbial community structure as determined by 16S and 18S rRNA gene amplicon sequencing. Specifically, we compared two buffering methods using NaCl solutions (“seawater,” melting the ice in an equal volume of 35-ppt solution, and “isohaline,” melting with a small volume of 250-ppt solution calculated to yield meltwater at estimated in situ brine salinity) to direct ice melting (no buffer addition) on both mechanically “shaved” and “non-shaved” samples. Shaving the ice shortened the melting process, with no significant impacts on the resulting measurements. The seawater buffer was best at minimizing cell lysis for this ice type, retaining the highest number of cells and chlorophyll a concentration. Comparative measurements of bacterial (16S) community structure highlighted ecologically relevant subsets of the community that were significantly more abundant in the buffered samples. The results for eukaryotic (18S) community structure were less conclusive. Taken together, our results suggest that an equivalent-volume seawater-salinity buffered melt is best at minimizing cell loss due to osmotic stress for springtime Arctic sea ice, but that either buffer will reduce bias in community composition when compared to direct melting. Overall, these findings indicate potential methodological biases that should be considered before developing a sea ice melting protocol for microbiological studies and afterwards, when interpreting biogeochemical or ecological meaning of the results. 
    more » « less
  5. Despite intense recent research interest in archaea, the scientific community has experienced a bottleneck in the study of genome-scale gene expression experiments by RNA-seq due to the lack of commercial and specifically designed rRNA depletion kits. The high rRNA:mRNA ratio (80–90%: ~10%) in prokaryotes hampers global transcriptomic analysis. Insufficient ribodepletion results in low sequence coverage of mRNA, and therefore, requires a substantially higher number of replicate samples and/or sequencing reads to achieve statistically reliable conclusions regarding the significance of differential gene expression between case and control samples. Here, we show that after the discontinuation of the previous version of RiboZero (Illumina, San Diego, CA, USA) that was useful in partially or completely depleting rRNA from archaea, archaeal transcriptomics studies have experienced a slowdown. To overcome this limitation, here, we analyze the efficiency for four different hybridization-based kits from three different commercial suppliers, each with two sets of sequence-specific probes to remove rRNA from four different species of halophilic archaea. We conclude that the key for transcriptomic success with the currently available tools is the probe-specificity for the rRNA sequence hybridization. With this paper, we provide insights into the archaeal community for selecting certain reagents and strategies over others depending on the archaeal species of interest. These methods yield improved RNA-seq sensitivity and enhanced detection of low abundance transcripts. 
    more » « less