skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1749858

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We studyℓnorms ofℓ2-normalized eigenfunctions of quantum cat maps. For maps with short quantum periods (constructed by Bonechi and de Biévre in F Bonechi and S De Bièvre (2000,Communications in Mathematical Physics,211, 659–686)) we show that there exists a sequence of eigenfunctionsuwith u log N 1 / 2 . For general eigenfunctions we show the upper bound u log N 1 / 2 . Here the semiclassical parameter is h = 2 π N 1 . Our upper bound is analogous to the one proved by Bérard in P Bérard (1977,Mathematische Zeitschrift,155, 249-276) for compact Riemannian manifolds without conjugate points. 
    more » « less
  2. Abstract Consider a quantum cat mapMassociated with a matrix $$A\in {{\,\textrm{Sp}\,}}(2n,{\mathbb {Z}})$$ A Sp ( 2 n , Z ) , which is a common toy model in quantum chaos. We show that the mass of eigenfunctions of Mon any nonempty open set in the position–frequency space satisfies a lower bound which is uniform in the semiclassical limit, under two assumptions: (1) there is a unique simple eigenvalue ofAof largest absolute value and (2) the characteristic polynomial ofAis irreducible over the rationals. This is similar to previous work (Dyatlov and Jin in Acta Math 220(2):297–339, 2018; Dyatlov et al. in J Am Math Soc 35(2):361–465, 2022) on negatively curved surfaces and (Schwartz in The full delocalization of eigenstates for the quantized cat map, 2021) on quantum cat maps with$$n=1$$ n = 1 , but this paper gives the first results of this type which apply in any dimension. When condition (2) fails we provide a weaker version of the result and discuss relations to existing counterexamples. We also obtain corresponding statements regarding semiclassical measures and damped quantum cat maps. 
    more » « less
  3. In this note we compute the threshold regularity for meromorphic continuation of the Pollicott--Ruelle resolvent of an Anosov flow as an operator on anisotropic Sobolev spaces, in the setting of lifts to general vector bundles. These thresholds are related to the Sobolev regularity needed for the decay of correlations. 
    more » « less
  4. Abstract We show that for a generic conformal metric perturbation of a compact hyperbolic 3-manifold  $$\Sigma $$ Σ with Betti number $$b_1$$ b 1 , the order of vanishing of the Ruelle zeta function at zero equals $$4-b_1$$ 4 - b 1 , while in the hyperbolic case it is equal to $$4-2b_1$$ 4 - 2 b 1 . This is in contrast to the 2-dimensional case where the order of vanishing is a topological invariant. The proof uses the microlocal approach to dynamical zeta functions, giving a geometric description of generalized Pollicott–Ruelle resonant differential forms at 0 in the hyperbolic case and using first variation for the perturbation. To show that the first variation is generically nonzero we introduce a new identity relating pushforwards of products of resonant and coresonant 2-forms on the sphere bundle $$S\Sigma $$ S Σ with harmonic 1-forms on  $$\Sigma $$ Σ . 
    more » « less
  5. We prove a microlocal lower bound on the mass of high energy eigenfunctions of the Laplacian on compact surfaces of negative curvature, and more generally on surfaces with Anosov geodesic flows. This implies controllability for the Schrödinger equation by any nonempty open set, and shows that every semiclassical measure has full support. We also prove exponential energy decay for solutions to the damped wave equation on such surfaces, for any nontrivial damping coefficient. These results extend previous works (see Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339] and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794]), which considered the setting of surfaces of constant negative curvature. The proofs use the strategy of Semyon Dyatlov and Long Jin [Acta Math. 220 (2018), pp. 297–339 and Long Jin [Comm. Math. Phys. 373 (2020), pp. 771–794] and rely on the fractal uncertainty principle of Jean Bourgain and Semyon Dyatlov [Ann. of Math. (2) 187 (2018), pp. 825–867]. However, in the variable curvature case the stable/unstable foliations are not smooth, so we can no longer associate to these foliations a pseudodifferential calculus of the type used by Semyon Dyatlov and Joshua Zahl [Geom. Funct. Anal. 26 (2016), pp. 1011–1094]. Instead, our argument uses Egorov’s theorem up to local Ehrenfest time and the hyperbolic parametrix of Stéphane Nonnenmacher and Maciej Zworski [Acta Math. 203 (2009), pp. 149–233], together with the C 1 + C^{1+} regularity of the stable/unstable foliations. 
    more » « less