Let
Consider a quantum cat map
 Award ID(s):
 1749858
 Publication Date:
 NSFPAR ID:
 10406793
 Journal Name:
 Annales Henri Poincaré
 ISSN:
 14240637
 Publisher:
 Springer Science + Business Media
 Sponsoring Org:
 National Science Foundation
More Like this

Abstract be a positive map from the$$\phi $$ $\varphi $ matrices$$n\times n$$ $n\times n$ to the$$\mathcal {M}_n$$ ${M}_{n}$ matrices$$m\times m$$ $m\times m$ . It is known that$$\mathcal {M}_m$$ ${M}_{m}$ is 2positive if and only if for all$$\phi $$ $\varphi $ and all strictly positive$$K\in \mathcal {M}_n$$ $K\in {M}_{n}$ ,$$X\in \mathcal {M}_n$$ $X\in {M}_{n}$ . This inequality is not generally true if$$\phi (K^*X^{1}K) \geqslant \phi (K)^*\phi (X)^{1}\phi (K)$$ $\varphi \left({K}^{\ast}{X}^{1}K\right)\u2a7e\varphi {\left(K\right)}^{\ast}\varphi {\left(X\right)}^{1}\varphi \left(K\right)$ is merely a Schwarz map. We show that the corresponding tracial inequality$$\phi $$ $\varphi $ holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.$${{\,\textrm{Tr}\,}}[\phi (K^*X^{1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{1}\phi (K)]$$ $\phantom{\rule{0ex}{0ex}}\text{Tr}\phantom{\rule{0ex}{0ex}}\left[\varphi \left({K}^{\ast}{X}^{1}K\right)\right]\u2a7e\phantom{\rule{0ex}{0ex}}\text{Tr}\phantom{\rule{0ex}{0ex}}\left[\varphi {\left(K\right)}^{\ast}\varphi {\left(X\right)}^{1}\varphi \left(K\right)\right]$ 
Abstract We prove that
depth local random quantum circuits with two qudit nearestneighbor gates on a$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$ $\phantom{\rule{0ex}{0ex}}\text{poly}\phantom{\rule{0ex}{0ex}}\left(t\right)\xb7{n}^{1/D}$D dimensional lattice withn qudits are approximatet designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was due to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$${{\,\textrm{poly}\,}}(t)\cdot n$$ $\phantom{\rule{0ex}{0ex}}\text{poly}\phantom{\rule{0ex}{0ex}}\left(t\right)\xb7n$ . We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($$D=1$$ $D=1$ ) is infinite and that certain counting problems are$${{\,\mathrm{\textsf{PH}}\,}}$$ $\phantom{\rule{0ex}{0ex}}\mathrm{PH}\phantom{\rule{0ex}{0ex}}$ hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constantdepth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anticoncentration”, meaning roughly that the output has nearmaximal entropy. Unitary 2designs have the desired anticoncentration property. Our result improves the required depth for this level of anticoncentration from linear depthmore »$$\#{\textsf{P}}$$ $\#P$ 
Abstract We present a proof of concept for a spectrally selective thermal midIR source based on nanopatterned graphene (NPG) with a typical mobility of CVDgrown graphene (up to 3000
), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of an$$\hbox {cm}^2\,\hbox {V}^{1}\,\hbox {s}^{1}$$ ${\text{cm}}^{2}\phantom{\rule{0ex}{0ex}}{\text{V}}^{1}\phantom{\rule{0ex}{0ex}}{\text{s}}^{1}$inplane electric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from to 12$$\lambda =3$$ $\lambda =3$ m by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming stateoftheart pristine graphene light sources operating in the nearinfrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$\upmu$$ $\mu $ W/$$11\times 10^3$$ $11\times {10}^{3}$ at$$\hbox {m}^2$$ ${\text{m}}^{2}$ K for a bias voltage of$$T=2000$$ $T=2000$ V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »$$V=23$$ $V=23$ 
Abstract Finite volume, weighted essentially nonoscillatory (WENO) schemes require the computation of a smoothness indicator. This can be expensive, especially in multiple space dimensions. We consider the use of the simple smoothness indicator
, where$$\sigma ^{\textrm{S}}= \frac{1}{N_{\textrm{S}}1}\sum _{j} ({\bar{u}}_{j}  {\bar{u}}_{m})^2$$ ${\sigma}^{\text{S}}=\frac{1}{{N}_{\text{S}}1}{\sum}_{j}{({\overline{u}}_{j}{\overline{u}}_{m})}^{2}$ is the number of mesh elements in the stencil,$$N_{\textrm{S}}$$ ${N}_{\text{S}}$ is the local function average over mesh element$${\bar{u}}_j$$ ${\overline{u}}_{j}$j , and indexm gives the target element. Reconstructions utilizing standard WENO weighting fail with this smoothness indicator. We develop a modification of WENOZ weighting that gives a reliable and accurate reconstruction of adaptive order, which we denote as SWENOZAO. We prove that it attains the order of accuracy of the large stencil polynomial approximation when the solution is smooth, and drops to the order of the small stencil polynomial approximations when there is a jump discontinuity in the solution. Numerical examples in one and two space dimensions on general meshes verify the approximation properties of the reconstruction. They also show it to be about 10 times faster in two space dimensions than reconstructions using the classic smoothness indicator. The new reconstruction is applied to define finite volume schemes to approximate the solution of hyperbolic conservation laws. Numerical tests show results of the same quality as standard WENOmore » 
Abstract We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loopensemble
for$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ in (4, 8) that is drawn on an independent$$\kappa '$$ ${\kappa}^{\prime}$ LQG surface for$$\gamma $$ $\gamma $ . The results are similar in flavor to the ones from our companion paper dealing with$$\gamma ^2=16/\kappa '$$ ${\gamma}^{2}=16/{\kappa}^{\prime}$ for$$\hbox {CLE}_{\kappa }$$ ${\text{CLE}}_{\kappa}$ in (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\kappa $$ $\kappa $ in terms of stable growthfragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$CLE Percolations ” described the law of interfaces obtained when coloring the loops of a independently into two colors with respective probabilities$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$p and . This description was complete up to one missing parameter$$1p$$ $1p$ . The results of the present paper about CLE on LQG allow us to determine its value in terms of$$\rho $$ $\rho $p and . It shows in particular that$$\kappa '$$ ${\kappa}^{\prime}$ and$$\hbox {CLE}_{\kappa '}$$ ${\text{CLE}}_{{\kappa}^{\prime}}$ are related via a continuum analog of the EdwardsSokal coupling between$$\hbox {CLE}_{16/\kappa '}$$ ${\text{CLE}}_{16/{\kappa}^{\prime}}$ percolation and the$$\hbox {FK}_q$$ ${\text{FK}}_{q}$q state Potts model (which makes sense evenmore »