skip to main content

Title: Semiclassical Measures for Higher-Dimensional Quantum Cat Maps
Abstract

Consider a quantum cat mapMassociated with a matrix $$A\in {{\,\textrm{Sp}\,}}(2n,{\mathbb {Z}})$$ASp(2n,Z), which is a common toy model in quantum chaos. We show that the mass of eigenfunctions of Mon any nonempty open set in the position–frequency space satisfies a lower bound which is uniform in the semiclassical limit, under two assumptions: (1) there is a unique simple eigenvalue ofAof largest absolute value and (2) the characteristic polynomial ofAis irreducible over the rationals. This is similar to previous work (Dyatlov and Jin in Acta Math 220(2):297–339, 2018; Dyatlov et al. in J Am Math Soc 35(2):361–465, 2022) on negatively curved surfaces and (Schwartz in The full delocalization of eigenstates for the quantized cat map, 2021) on quantum cat maps with$$n=1$$n=1, but this paper gives the first results of this type which apply in any dimension. When condition (2) fails we provide a weaker version of the result and discuss relations to existing counterexamples. We also obtain corresponding statements regarding semiclassical measures and damped quantum cat maps.

Authors:
;
Award ID(s):
1749858
Publication Date:
NSF-PAR ID:
10406793
Journal Name:
Annales Henri Poincaré
ISSN:
1424-0637
Publisher:
Springer Science + Business Media
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Let$$\phi $$ϕbe a positive map from the$$n\times n$$n×nmatrices$$\mathcal {M}_n$$Mnto the$$m\times m$$m×mmatrices$$\mathcal {M}_m$$Mm. It is known that$$\phi $$ϕis 2-positive if and only if for all$$K\in \mathcal {M}_n$$KMnand all strictly positive$$X\in \mathcal {M}_n$$XMn,$$\phi (K^*X^{-1}K) \geqslant \phi (K)^*\phi (X)^{-1}\phi (K)$$ϕ(KX-1K)ϕ(K)ϕ(X)-1ϕ(K). This inequality is not generally true if$$\phi $$ϕis merely a Schwarz map. We show that the corresponding tracial inequality$${{\,\textrm{Tr}\,}}[\phi (K^*X^{-1}K)] \geqslant {{\,\textrm{Tr}\,}}[\phi (K)^*\phi (X)^{-1}\phi (K)]$$Tr[ϕ(KX-1K)]Tr[ϕ(K)ϕ(X)-1ϕ(K)]holds for a wider class of positive maps that is specified here. We also comment on the connections of this inequality with various monotonicity statements that have found wide use in mathematical physics, and apply it, and a close relative, to obtain some new, definitive results.

  2. Abstract

    We prove that$${{\,\textrm{poly}\,}}(t) \cdot n^{1/D}$$poly(t)·n1/D-depth local random quantum circuits with two qudit nearest-neighbor gates on aD-dimensional lattice withnqudits are approximatet-designs in various measures. These include the “monomial” measure, meaning that the monomials of a random circuit from this family have expectation close to the value that would result from the Haar measure. Previously, the best bound was$${{\,\textrm{poly}\,}}(t)\cdot n$$poly(t)·ndue to Brandão–Harrow–Horodecki (Commun Math Phys 346(2):397–434, 2016) for$$D=1$$D=1. We also improve the “scrambling” and “decoupling” bounds for spatially local random circuits due to Brown and Fawzi (Scrambling speed of random quantum circuits, 2012). One consequence of our result is that assuming the polynomial hierarchy ($${{\,\mathrm{\textsf{PH}}\,}}$$PH) is infinite and that certain counting problems are$$\#{\textsf{P}}$$#P-hard “on average”, sampling within total variation distance from these circuits is hard for classical computers. Previously, exact sampling from the outputs of even constant-depth quantum circuits was known to be hard for classical computers under these assumptions. However the standard strategy for extending this hardness result to approximate sampling requires the quantum circuits to have a property called “anti-concentration”, meaning roughly that the output has near-maximal entropy. Unitary 2-designs have the desired anti-concentration property. Our result improves the required depth for this level of anti-concentration from linear depthmore »to a sub-linear value, depending on the geometry of the interactions. This is relevant to a recent experiment by the Google Quantum AI group to perform such a sampling task with 53 qubits on a two-dimensional lattice (Arute in Nature 574(7779):505–510, 2019; Boixo et al. in Nate Phys 14(6):595–600, 2018) (and related experiments by USTC), and confirms their conjecture that$$O(\sqrt{n})$$O(n)depth suffices for anti-concentration. The proof is based on a previous construction oft-designs by Brandão et al. (2016), an analysis of how approximate designs behave under composition, and an extension of the quasi-orthogonality of permutation operators developed by Brandão et al. (2016). Different versions of the approximate design condition correspond to different norms, and part of our contribution is to introduce the norm corresponding to anti-concentration and to establish equivalence between these various norms for low-depth circuits. For random circuits with long-range gates, we use different methods to show that anti-concentration happens at circuit size$$O(n\ln ^2 n)$$O(nln2n)corresponding to depth$$O(\ln ^3 n)$$O(ln3n). We also show a lower bound of$$\Omega (n \ln n)$$Ω(nlnn)for the size of such circuit in this case. We also prove that anti-concentration is possible in depth$$O(\ln n \ln \ln n)$$O(lnnlnlnn)(size$$O(n \ln n \ln \ln n)$$O(nlnnlnlnn)) using a different model.

    « less
  3. Abstract

    We present a proof of concept for a spectrally selective thermal mid-IR source based on nanopatterned graphene (NPG) with a typical mobility of CVD-grown graphene (up to 3000$$\hbox {cm}^2\,\hbox {V}^{-1}\,\hbox {s}^{-1}$$cm2V-1s-1), ensuring scalability to large areas. For that, we solve the electrostatic problem of a conducting hyperboloid with an elliptical wormhole in the presence of anin-planeelectric field. The localized surface plasmons (LSPs) on the NPG sheet, partially hybridized with graphene phonons and surface phonons of the neighboring materials, allow for the control and tuning of the thermal emission spectrum in the wavelength regime from$$\lambda =3$$λ=3to 12$$\upmu$$μm by adjusting the size of and distance between the circular holes in a hexagonal or square lattice structure. Most importantly, the LSPs along with an optical cavity increase the emittance of graphene from about 2.3% for pristine graphene to 80% for NPG, thereby outperforming state-of-the-art pristine graphene light sources operating in the near-infrared by at least a factor of 100. According to our COMSOL calculations, a maximum emission power per area of$$11\times 10^3$$11×103W/$$\hbox {m}^2$$m2at$$T=2000$$T=2000K for a bias voltage of$$V=23$$V=23V is achieved by controlling the temperature of the hot electrons through the Joule heating. By generalizing Planck’s theory to any grey body and derivingmore »the completely general nonlocal fluctuation-dissipation theorem with nonlocal response of surface plasmons in the random phase approximation, we show that the coherence length of the graphene plasmons and the thermally emitted photons can be as large as 13$$\upmu$$μm and 150$$\upmu$$μm, respectively, providing the opportunity to create phased arrays made of nanoantennas represented by the holes in NPG. The spatial phase variation of the coherence allows for beamsteering of the thermal emission in the range between$$12^\circ$$12and$$80^\circ$$80by tuning the Fermi energy between$$E_F=1.0$$EF=1.0eV and$$E_F=0.25$$EF=0.25eV through the gate voltage. Our analysis of the nonlocal hydrodynamic response leads to the conjecture that the diffusion length and viscosity in graphene are frequency-dependent. Using finite-difference time domain calculations, coupled mode theory, and RPA, we develop the model of a mid-IR light source based on NPG, which will pave the way to graphene-based optical mid-IR communication, mid-IR color displays, mid-IR spectroscopy, and virus detection.

    « less
  4. Abstract

    Finite volume, weighted essentially non-oscillatory (WENO) schemes require the computation of a smoothness indicator. This can be expensive, especially in multiple space dimensions. We consider the use of the simple smoothness indicator$$\sigma ^{\textrm{S}}= \frac{1}{N_{\textrm{S}}-1}\sum _{j} ({\bar{u}}_{j} - {\bar{u}}_{m})^2$$σS=1NS-1j(u¯j-u¯m)2, where$$N_{\textrm{S}}$$NSis the number of mesh elements in the stencil,$${\bar{u}}_j$$u¯jis the local function average over mesh elementj, and indexmgives the target element. Reconstructions utilizing standard WENO weighting fail with this smoothness indicator. We develop a modification of WENO-Z weighting that gives a reliable and accurate reconstruction of adaptive order, which we denote as SWENOZ-AO. We prove that it attains the order of accuracy of the large stencil polynomial approximation when the solution is smooth, and drops to the order of the small stencil polynomial approximations when there is a jump discontinuity in the solution. Numerical examples in one and two space dimensions on general meshes verify the approximation properties of the reconstruction. They also show it to be about 10 times faster in two space dimensions than reconstructions using the classic smoothness indicator. The new reconstruction is applied to define finite volume schemes to approximate the solution of hyperbolic conservation laws. Numerical tests show results of the same quality as standard WENOmore »schemes using the classic smoothness indicator, but with an overall speedup in the computation time of about 3.5–5 times in 2D tests. Moreover, the computational efficiency (CPU time versus error) is noticeably improved.

    « less
  5. Abstract

    We study the structure of the Liouville quantum gravity (LQG) surfaces that are cut out as one explores a conformal loop-ensemble$$\hbox {CLE}_{\kappa '}$$CLEκfor$$\kappa '$$κin (4, 8) that is drawn on an independent$$\gamma $$γ-LQG surface for$$\gamma ^2=16/\kappa '$$γ2=16/κ. The results are similar in flavor to the ones from our companion paper dealing with$$\hbox {CLE}_{\kappa }$$CLEκfor$$\kappa $$κin (8/3, 4), where the loops of the CLE are disjoint and simple. In particular, we encode the combined structure of the LQG surface and the$$\hbox {CLE}_{\kappa '}$$CLEκin terms of stable growth-fragmentation trees or their variants, which also appear in the asymptotic study of peeling processes on decorated planar maps. This has consequences for questions that do a priori not involve LQG surfaces: In our paper entitled “CLE Percolations” described the law of interfaces obtained when coloring the loops of a$$\hbox {CLE}_{\kappa '}$$CLEκindependently into two colors with respective probabilitiespand$$1-p$$1-p. This description was complete up to one missing parameter$$\rho $$ρ. The results of the present paper about CLE on LQG allow us to determine its value in terms ofpand$$\kappa '$$κ. It shows in particular that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κare related via a continuum analog of the Edwards-Sokal coupling between$$\hbox {FK}_q$$FKqpercolation and theq-state Potts model (which makes sense evenmore »for non-integerqbetween 1 and 4) if and only if$$q=4\cos ^2(4\pi / \kappa ')$$q=4cos2(4π/κ). This provides further evidence for the long-standing belief that$$\hbox {CLE}_{\kappa '}$$CLEκand$$\hbox {CLE}_{16/\kappa '}$$CLE16/κrepresent the scaling limits of$$\hbox {FK}_q$$FKqpercolation and theq-Potts model whenqand$$\kappa '$$κare related in this way. Another consequence of the formula for$$\rho (p,\kappa ')$$ρ(p,κ)is the value of half-plane arm exponents for such divide-and-color models (a.k.a. fuzzy Potts models) that turn out to take a somewhat different form than the usual critical exponents for two-dimensional models.

    « less