Theory predicts that organisms should diversify their offspring when faced with a stressful environment. This prediction has received empirical support across diverse groups of organisms and stressors. For example, when encountered by
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Caenorhabditis elegans during early development, food limitation (a common environmental stressor) induces the nematodes to arrest in a developmental stage called dauer and to increase their propensity to outcross when they are subsequently provided with food and enabled to develop to maturity. Here we tested whether food limitation first encountered during late development/early adulthood can also induce increased outcrossing propensity inC. elegans . Previously well‐fedC. elegans increased their propensity to outcross when challenged with food limitation during the final larval stage of development and into early adulthood, relative to continuously well‐fed (control) nematodes. Our results thus support previous research demonstrating that the stress of food limitation can induce increased outcrossing propensity inC. elegans . Furthermore, our results expand on previous work by showing that food limitation can still increase outcrossing propensity even when it is not encountered until late development, and this can occur independently of the developmental and gene expression changes associated with dauer.Free, publicly-accessible full text available March 1, 2025 -
Abstract Biparental sex is widespread in nature, yet costly relative to uniparental reproduction. It is generally unclear why self-fertilizing or asexual lineages do not readily invade outcrossing populations. The Red Queen hypothesis predicts that coevolving parasites can prevent self-fertilizing or asexual lineages from invading outcrossing host populations. However, only highly virulent parasites are predicted to maintain outcrossing, which may limit the general applicability of the Red Queen hypothesis. Here, we tested whether the ability of coevolving parasites to prevent invasion of self-fertilization within outcrossing host populations was dependent on parasite virulence. We introduced wild-type Caenorhabditis elegans hermaphrodites, capable of both self-fertilization and outcrossing, into C. elegans populations fixed for a mutant allele conferring obligate outcrossing. Replicate C. elegans populations were exposed for 24 host generations to one of four strains of Serratia marcescens parasites that varied in virulence, under three treatments: a heat-killed (control, noninfectious) parasite treatment, a fixed-genotype (nonevolving) parasite treatment, and a copassaged (potentially coevolving) parasite treatment. As predicted, self-fertilization invaded C. elegans host populations in the control and fixed-parasite treatments, regardless of parasite virulence. In the copassaged treatment, selfing invaded host populations coevolving with low- to mid-virulence strains, but remained rare in hosts coevolving with highly virulent bacterial strains. Therefore, we found that only highly virulent coevolving parasites can impede the invasion of selfing.
-
Abstract Gene flow into populations can increase additive genetic variation and introduce novel beneficial alleles, thus facilitating adaptation. However, gene flow may also impede adaptation by disrupting beneficial genotypes, introducing deleterious alleles, or creating novel dominant negative interactions. While theory and fieldwork have provided insight into the effects of gene flow, direct experimental tests are rare. Here, we evaluated the effects of gene flow on adaptation in the nematode Caenorhabditis elegans during exposure to the bacterial parasite, Serratia marcescens. We evolved hosts against nonevolving parasites for 10 passages while controlling host gene flow and source population. We used source nematode populations with three different genetic backgrounds (one similar to the sink population and two different) and two evolutionary histories (previously adapted to S. marcescens or naive). We found that populations with gene flow exhibited greater increases in parasite resistance than those without gene flow. Additionally, gene flow from adapted populations resulted in greater increases in resistance than gene flow from naive populations, particularly with gene flow from novel genetic backgrounds. Overall, this work demonstrates that gene flow can facilitate adaptation and suggests that the genetic architecture and evolutionary history of source populations can alter the sink population’s response to selection.
-
Abstract In the past three decades, laboratory natural selection has become a widely used technique in biological research. Most studies which have utilized this technique are in the realm of basic science, often testing hypotheses related to mechanisms of evolutionary change or ecological dynamics. While laboratory natural selection is currently utilized heavily in this setting, there is a significant gap with its usage in applied studies, especially when compared to the other selection experiment methodologies like artificial selection and directed evolution. This is despite avenues of research in the applied sciences which seem well suited to laboratory natural selection. In this review, we place laboratory natural selection in context with other selection experiments, identify the characteristics which make it well suited for particular kinds of applied research and briefly cover key examples of the usefulness of selection experiments within applied science. Finally, we identify three promising areas of inquiry for laboratory natural selection in the applied sciences: bioremediation technology, identifying mechanisms of drug resistance and optimizing biofuel production. Although laboratory natural selection is currently less utilized in applied science when compared to basic research, the method has immense promise in the field moving forward.
-
Abstract Despite the ubiquity and importance of mutualistic interactions, we know little about the evolutionary genetics underlying their long‐term persistence. As in antagonistic interactions, mutualistic symbioses are characterized by substantial levels of phenotypic and genetic diversity. In contrast to antagonistic interactions, however, we, by and large, do not understand how this variation arises, how it is maintained, nor its implications for future evolutionary change. Currently, we rely on phenotypic models to address the persistence of mutualistic symbioses, but the success of an interaction almost certainly depends heavily on genetic interactions. In this review, we argue that evolutionary genetic models could provide a framework for understanding the causes and consequences of diversity and why selection may favour processes that maintain variation in mutualistic interactions.
-
Abstract Host–parasite interactions may often be subject to opposing evolutionary forces, which likely influence the evolutionary trajectories of both partners. Natural selection and genetic drift are two major evolutionary forces that act in host and parasite populations. Further, population size is a significant determinant of the relative strengths of these forces. In small populations, drift may undermine the persistence of beneficial alleles, potentially impeding host adaptation to parasites. Here, we investigate two questions: (a) can selection pressure for increased resistance in small, susceptible host populations overcome the effects of drift and (b) can resistance be maintained in small host populations? To answer these questions, we experimentally evolved the host
Caenorhabditis elegans against its bacterial parasite,Serratia marcescens , for 13 host generations. We found that strong selection favouring increased host resistance was insufficient to counteract drift in small populations, resulting in persistently high host mortality. Additionally, in small populations of resistant hosts, we found that selection for the maintenance of resistance is not always sufficient to curb the loss of resistance. We compared these results with selection in large host populations. We found that initially resistant, large host populations were able to maintain high levels of resistance. Likewise, initially susceptible, large host populations were able to gain resistance to the parasite. These results show that strong selection pressure for survival is not always sufficient to counteract drift. In consideration ofC. elegans natural population dynamics, we suggest that drift may often impede selection in nature. -
Abstract Theory on the evolution of niche width argues that resource heterogeneity selects for niche breadth. For parasites, this theory predicts that parasite populations will evolve, or maintain, broader host ranges when selected in genetically diverse host populations relative to homogeneous host populations. To test this prediction, we selected the bacterial parasite
Serratia marcescens to killCaenorhabditis elegans in populations that were genetically heterogeneous (50% mix of two experimental genotypes) or homogeneous (100% of either genotype). After 20 rounds of selection, we compared the host range of selected parasites by measuring parasite fitness (i.e. virulence, the selected fitness trait) on the two focal host genotypes and on a novel host genotype. As predicted, heterogeneous host populations selected for parasites with a broader host range: these parasite populations gained or maintained virulence on all host genotypes. This result contrasted with selection in homogeneous populations of one host genotype. Here, host range contracted, with parasite populations gaining virulence on the focal host genotype and losing virulence on the novel host genotype. This pattern was not, however, repeated with selection in homogeneous populations of the second host genotype: these parasite populations did not gain virulence on the focal host genotype, nor did they lose virulence on the novel host genotype. Our results indicate that host heterogeneity can maintain broader host ranges in parasite populations. Individual host genotypes, however, vary in the degree to which they select for specialization in parasite populations. -
Host populations often evolve defenses against parasites due to the significant fitness costs imposed by infection. However, adaptation to a specific parasite may alter the effectiveness of the host’s defenses in general. Consequently, the specificity of host defense may be influenced by a host population’s evolutionary history with parasites. Further, the degree of reciprocal change within an interaction may profoundly alter the range of host defense, given that antagonistic coevolutionary interactions are predicted to favor defense against specific parasite genotypes. Here, we examined the effect of host evolutionary history on host defense range by assessing the mortality rates of Caenorhabditis elegans host populations exposed to an array of Serratia marcescens bacterial parasite strains. Importantly, each of the host populations were derived from the same genetic background but have different experimental evolution histories with parasites. Each of these histories (exposure to either heat-killed, fixed genotype, or coevolving parasites) carries a different level of evolutionary reciprocity. Overall, we observed an effect of host evolutionary history in that previously coevolved host populations were generally the most susceptible to novel parasite strains. This data demonstrates that host evolutionary history can have a significant impact on host defense, and that host-parasite coevolution can increase host susceptibility to novel parasites.more » « less
-
The ability to generate genetic variation facilitates rapid adaptation in stressful environments. The opportunistic fungal pathogen Candida albicans frequently undergoes large-scale genomic changes, including aneuploidy and loss-of heterozygosity (LOH), following exposure to host environments. However, the specific host factors inducing C. albicans genome instability remain largely unknown. Here, we leveraged the genetic tractability of nematode hosts to investigate whether innate immune components, including antimicrobial peptides (AMPs) and reactive oxygen species (ROS), induced host-associated C. albicans genome instability. C. albicans associated with immunocompetent hosts carried multiple large-scale genomic changes including LOH, whole chromosome, and segmental aneuploidies. In contrast, C. albicans associated with immunocompromised hosts deficient in AMPs or ROS production had reduced LOH frequencies and fewer, if any, additional genomic changes. To evaluate if extensive host-induced genomic changes had long-term consequences for C. albicans adaptation, we experimentally evolved C. albicans in either immunocompetent or immunocompromised hosts and selected for increased virulence. C. albicans evolved in immunocompetent hosts rapidly increased virulence, but not in immunocompromised hosts. Taken together, this work suggests that host-produced ROS and AMPs induces genotypic plasticity in C. albicans which facilitates rapid evolution.more » « less
-
null (Ed.)ABSTRACT Calls for early exposure of all undergraduates to research have led to the increased use and study of course-based research experiences (CREs). CREs have been shown to increase measures of persistence in the sciences, such as science identity, scientific self-efficacy, project ownership, scientific community values, and networking. However, implementing CREs can be challenging and resource-intensive. These barriers may be partly mitigated by the use of short-term CRE modules rather than semester- or year-long projects. One study has shown that a CRE module captures some of the known benefits of CREs as measured by the Persistence in the Sciences (PITS) survey. Here, we used this same survey to assess outcomes for introductory biology students who completed a semester of modular CREs based on faculty research at an R1 university. The results indicated levels of self-efficacy, science community values, and science identity similar to those previously reported for students in the Science Education Alliance-Phage Hunters Advancing Genomics and Evolutionary Science (SEA-PHAGES) full-semester CRE. Scores for project ownership (content) were between previously reported traditional lab and CRE scores, while project ownership (emotion) and networking were similar to those of traditional labs. Our results suggest that modular CREs can lead to significant gains in student affect measures that have been linked to persistence in the sciences in other studies. Although gains were not as great in all measures as with a semester-long CRE, implementation of modular CREs may be more feasible and offers the added benefits of exposing students to diverse research fields and lab techniques.more » « less