skip to main content


Title: Host defense mechanisms induce genome instability leading to rapid evolution in an opportunistic fungal pathogen
The ability to generate genetic variation facilitates rapid adaptation in stressful environments. The opportunistic fungal pathogen Candida albicans frequently undergoes large-scale genomic changes, including aneuploidy and loss-of heterozygosity (LOH), following exposure to host environments. However, the specific host factors inducing C. albicans genome instability remain largely unknown. Here, we leveraged the genetic tractability of nematode hosts to investigate whether innate immune components, including antimicrobial peptides (AMPs) and reactive oxygen species (ROS), induced host-associated C. albicans genome instability. C. albicans associated with immunocompetent hosts carried multiple large-scale genomic changes including LOH, whole chromosome, and segmental aneuploidies. In contrast, C. albicans associated with immunocompromised hosts deficient in AMPs or ROS production had reduced LOH frequencies and fewer, if any, additional genomic changes. To evaluate if extensive host-induced genomic changes had long-term consequences for C. albicans adaptation, we experimentally evolved C. albicans in either immunocompetent or immunocompromised hosts and selected for increased virulence. C. albicans evolved in immunocompetent hosts rapidly increased virulence, but not in immunocompromised hosts. Taken together, this work suggests that host-produced ROS and AMPs induces genotypic plasticity in C. albicans which facilitates rapid evolution.  more » « less
Award ID(s):
1750553
NSF-PAR ID:
10316400
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Infection and Immunity
ISSN:
0019-9567
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mitchell, Aaron P. (Ed.)
    ABSTRACT Candida albicans is an opportunistic fungal pathogen of humans that is typically diploid yet has a highly labile genome tolerant of large-scale perturbations including chromosomal aneuploidy and loss-of-heterozygosity events. The ability to rapidly generate genetic variation is crucial for C. albicans to adapt to changing or stressful environments, like those encountered in the host. Genetic variation occurs via stress-induced mutagenesis or can be generated through its parasexual cycle, in which tetraploids arise via diploid mating or stress-induced mitotic defects and undergo nonmeiotic ploidy reduction. However, it remains largely unknown how genetic background contributes to C. albicans genome instability in vitro or in the host environment. Here, we tested how genetic background, ploidy, and the host environment impacts C. albicans genome stability. We found that host association induced both loss-of-heterozygosity events and genome size changes, regardless of genetic background or ploidy. However, the magnitude and types of genome changes varied across C. albicans strain background and ploidy state. We then assessed if host-induced genomic changes resulted in fitness consequences on growth rate and nonlethal virulence phenotypes and found that many host-derived isolates significantly changed relative to their parental strain. Interestingly, diploid host-associated C. albicans predominantly decreased host reproductive fitness, whereas tetraploid host-associated C. albicans increased host reproductive fitness. Together, these results are important for understanding how host-induced genomic changes in C. albicans alter its relationship with the host. IMPORTANCE Candida albicans is an opportunistic fungal pathogen of humans. The ability to generate genetic variation is essential for adaptation and is a strategy that C. albicans and other fungal pathogens use to change their genome size. Stressful environments, including the host, induce C. albicans genome instability. Here, we investigated how C. albicans genetic background and ploidy state impact genome instability, both in vitro and in a host environment. We show that the host environment induces genome instability, but the magnitude depends on C. albicans genetic background. Furthermore, we show that tetraploid C. albicans is highly unstable in host environments and rapidly reduces in genome size. These reductions in genome size often resulted in reduced virulence. In contrast, diploid C. albicans displayed modest host-induced genome size changes, yet these frequently resulted in increased virulence. Such studies are essential for understanding how opportunistic pathogens respond and potentially adapt to the host environment. 
    more » « less
  2. Candida albicans is both a member of the healthy human microbiome and a major pathogen in immunocompromised individuals. Infections are typically treated with azole inhibitors of ergosterol biosynthesis often leading to drug resistance. Studies in clinical isolates have implicated multiple mechanisms in resistance, but have focused on large-scale aberrations or candidate genes, and do not comprehensively chart the genetic basis of adaptation. Here, we leveraged next-generation sequencing to analyze 43 isolates from 11 oral candidiasis patients. We detected newly selected mutations, including single-nucleotide polymorphisms (SNPs), copy-number variations and loss-of-heterozygosity (LOH) events. LOH events were commonly associated with acquired resistance, and SNPs in 240 genes may be related to host adaptation. Conversely, most aneuploidies were transient and did not correlate with drug resistance. Our analysis also shows that isolates also varied in adherence, filamentation, and virulence. Our work reveals new molecular mechanisms underlying the evolution of drug resistance and host adaptation.

     
    more » « less
  3. Abstract

    Studying fungal virulence is often challenging and frequently depends on many contexts, including host immune status and pathogen genetic background. However, the role of ploidy has often been overlooked when studying virulence in eukaryotic pathogens. Since fungal pathogens, including the human opportunistic pathogenCandida albicans, can display extensive ploidy variation, assessing how ploidy impacts virulence has important clinical relevance. As an opportunistic pathogen,C. albicanscauses nonlethal, superficial infections in healthy individuals, but life‐threatening bloodstream infections in individuals with compromised immune function. Here, we determined how both ploidy and genetic background ofC. albicansimpacts virulence phenotypes in healthy and immunocompromised nematode hosts by characterizing virulence phenotypes in four near‐isogenic diploid and tetraploid pairs of strains, which included both laboratory and clinical genetic backgrounds. We found thatC. albicansinfections decreased host survival and negatively impacted host reproduction, and we leveraged these two measures to survey both lethal and nonlethal virulence phenotypes across the multipleC. albicansstrains. In this study, we found that regardless of pathogen ploidy or genetic background, immunocompromised hosts were susceptible to fungal infection compared to healthy hosts. Furthermore, for each host context, we found a significant interaction betweenC. albicansgenetic background and ploidy on virulence phenotypes, but no global differences between diploid and tetraploid pathogens were observed.

     
    more » « less
  4. Abstract Background

    CRISPR-Cas (clustered regularly interspaced short palindromic repeats—CRISPR-associated proteins) systems are adaptive immune systems commonly found in prokaryotes that provide sequence-specific defense against invading mobile genetic elements (MGEs). The memory of these immunological encounters are stored in CRISPR arrays, where spacer sequences record the identity and history of past invaders. Analyzing such CRISPR arrays provide insights into the dynamics of CRISPR-Cas systems and the adaptation of their host bacteria to rapidly changing environments such as the human gut.

    Results

    In this study, we utilized 601 publicly availableBacteroides fragilisgenome isolates from 12 healthy individuals, 6 of which include longitudinal observations, and 222 availableB. fragilisreference genomes to update the understanding ofB. fragilisCRISPR-Cas dynamics and their differential activities. Analysis of longitudinal genomic data showed that some CRISPR array structures remained relatively stable over time whereas others involved radical spacer acquisition during some periods, and diverse CRISPR arrays (associated with multiple isolates) co-existed in the same individuals with some persisted over time. Furthermore, features of CRISPR adaptation, evolution, and microdynamics were highlighted through an analysis of host-MGE network, such as modules of multiple MGEs and hosts, reflecting complex interactions betweenB. fragilisand its invaders mediated through the CRISPR-Cas systems.

    Conclusions

    We made available of all annotated CRISPR-Cas systems and their target MGEs, and their interaction network as a web resource athttps://omics.informatics.indiana.edu/CRISPRone/Bfragilis. We anticipate it will become an important resource for studying ofB. fragilis, its CRISPR-Cas systems, and its interaction with mobile genetic elements providing insights into evolutionary dynamics that may shape the species virulence and lead to its pathogenicity.

     
    more » « less
  5. Abstract

    Interactions between hosts and pathogens are dynamic at both ecological and evolutionary levels. In the resultant ‘eco‐evolutionary dynamics’ ecological and evolutionary processes affect each other. For example, the house finchHaemorhous mexicanusand its recently emerged pathogen, the bacteriumMycoplasma gallisepticum, form a system in which evidence suggests that changes in bacterial virulence through time enhance levels of host immunity in ways that drive the evolution of virulence in an arms race.

    We use data from two associated citizen science projects in order to determine whether this arms race has had any detectable effect at the population level in the north‐eastern United States.

    We used data from two citizen science projects, based on observations of birds at bird feeders, which provide information on the long‐term changes in sizes of aggregations of house finches (host population density), and the probabilities that these house finches have observable disease (disease prevalence).

    The initial emergence ofM. gallisepticumcaused a rapid halving of house finch densities; this was then followed by house finch populations remaining stable or slowly declining. Disease prevalence also decreased sharply after the initial emergence and has remained low, although with fluctuations through time. Surprisingly, while initially higher local disease prevalence was found at sites with higher local densities of finches, this relationship has reversed over time.

    The ability of a vertebrate host species, with a generation time of at least 1 year, to maintain stable populations in the face of evolved higher virulence of a bacterium, with generation times measurable in minutes, suggests that genetic changes in the host are insufficient to explain the observed population‐level patterns. We suggest that acquired immunity plays an important role in the observed interaction between house finches andM. gallisepticum.

     
    more » « less