skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1750911

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Deep learning’s performance has been extensively recognized recently. Graph neural networks (GNNs) are designed to deal with graph-structural data that classical deep learning does not easily manage. Since most GNNs were created using distinct theories, direct comparisons are impossible. Prior research has primarily concentrated on categorizing existing models, with little attention paid to their intrinsic connections. The purpose of this study is to establish a unified framework that integrates GNNs based on spectral graph and approximation theory. The framework incorporates a strong integration between spatial- and spectral-based GNNs while tightly associating approaches that exist within each respective domain. 
    more » « less
  2. Hyperspectral imaging (HSI) technology captures spectral information across a broad wavelength range, providing richer pixel features compared to traditional color images with only three channels. Although pixel classification in HSI has been extensively studied, especially using graph convolution neural networks (GCNs), quantifying epistemic and aleatoric uncertainties associated with the HSI classification (HSIC) results remains an unexplored area. These two uncertainties are effective for out-of-distribution (OOD) and misclassification detection, respectively. In this paper, we adapt two advanced uncertainty quantification models, evidential GCNs (EGCN) and graph posterior networks (GPN), designed for node classifications in graphs, into the realm of HSIC. We first reveal theoretically that a popular uncertainty cross-entropy (UCE) loss function is insufficient to produce good epistemic uncertainty when learning EGCNs. To mitigate the limitations, we propose two regularization terms. One leverages the inherent property of HSI data where each feature vector is a linear combination of the spectra signatures of the confounding materials, while the other is the total variation (TV) regularization to enforce the spatial smoothness of the evidence with edge-preserving. We demonstrate the effectiveness of the proposed regularization terms on both EGCN and GPN on three real-world HSIC datasets for OOD and misclassification detection tasks. 
    more » « less
  3. We present PROVNINJA, a framework designed to generate adversarial attacks that aim to elude provenance-based Machine Learning (ML) security detectors. PROVNINJA is designed to identify and craft adversarial attack vectors that statistically mimic and impersonate system programs. Leveraging the benign execution profile of system processes commonly observed across a multitude of hosts and networks, our research proposes an efficient and effective method to probe evasive alternatives and devise stealthy attack vectors that are difficult to distinguish from benign system behaviors. PROVNINJA's suggestions for evasive attacks, originally derived in the feature space, are then translated into system actions, leading to the realization of actual evasive attack sequences in the problem space. When evaluated against State-of-The-Art (SOTA) detector models using two realistic Advanced Persistent Threat (APT) scenarios and a large collection of fileless malware samples, PROVNINJA could generate and realize evasive attack variants, reducing the detection rates by up to 59%. We also assessed PROVNINJA under varying assumptions on adversaries' knowledge and capabilities. While PROVNINJA primarily considers the black-box model, we also explored two contrasting threat models that consider blind and whitebox attack scenarios. 
    more » « less
  4. We present PROVNINJA, a framework designed to generate adversarial attacks that aim to elude provenance-based Machine Learning (ML) security detectors. PROVNINJA is designed to identify and craft adversarial attack vectors that statistically mimic and impersonate system programs. Leveraging the benign execution profile of system processes commonly observed across a multitude of hosts and networks, our research proposes an efficient and effective method to probe evasive alternatives and devise stealthy attack vectors that are difficult to distinguish from benign system behaviors. PROVNINJA's suggestions for evasive attacks, originally derived in the feature space, are then translated into system actions, leading to the realization of actual evasive attack sequences in the problem space. When evaluated against State-of-The-Art (SOTA) detector models using two realistic Advanced Persistent Threat (APT) scenarios and a large collection of fileless malware samples, PROVNINJA could generate and realize evasive attack variants, reducing the detection rates by up to 59%. We also assessed PROVNINJA under varying assumptions on adversaries' knowledge and capabilities. While PROVNINJA primarily considers the black-box model, we also explored two contrasting threat models that consider blind and white-box attack scenarios. 
    more » « less
  5. Demeniconi; Carlotta; Nitesh V. Chawla (Ed.)
    The motives and means of explicit state censorship have been well studied, both quantitatively and qualitatively. Self-censorship by media outlets, however, has not received nearly as much attention, mostly because it is difficult to systematically detect. We develop a novel approach to identify news media self-censorship by using social media as a sensor. We develop a hypothesis testing framework to identify and evaluate censored clusters of keywords and a near-linear-time algorithm (called GraphDPD) to identify the highest-scoring clusters as indicators of censorship. We evaluate the accuracy of our framework, versus other state-of-the-art algorithms, using both semi-synthetic and real-world data from Mexico and Venezuela during Year 2014. These tests demonstrate the capacity of our framework to identify self-censorship and provide an indicator of broader media freedom. The results of this study lay the foundation for detection, study, and policy-response to self-censorship. 
    more » « less