skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1754668

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Forests sequester a substantial portion of anthropogenic carbon emissions. Many open questions concern how. We address two of these questions. Has leaf and fine litter production changed? And what is the contribution of old‐growth forests? We address these questions with long‐term records (≥10 years) of total, reproductive, and especially foliar fine litter production from 32 old‐growth forests. We expect increases in forest productivity associated with rising atmospheric carbon dioxide concentrations and, in cold climates, with rising temperatures. We evaluate the statistical power of our analysis using simulations of known temporal trends parameterized with sample sizes (in number of years) and levels of interannual variation observed for each record. Statistical power is inadequate to detect biologically plausible trends for records lasting less than 20 years. Modest interannual variation characterizes fine litter production, and more variable phenomena will require even longer records to evaluate global change responses with sufficient statistical power. Just four old‐growth forests have records of fine litter production lasting longer than 20 years, and these four provide no evidence for increases. Three of the four forests are in central Panama, also have long‐term records of wood production, and both components of aboveground production are unchanged over 21–38 years. The possibility that recent increases in forest productivity are limited for old‐growth forests deserves more attention. 
    more » « less
    Free, publicly-accessible full text available January 1, 2026
  2. ABSTRACT The fundamental trade‐off between current and future reproduction has long been considered to result in a tendency for species that can grow large to begin reproduction at a larger size. Due to the prolonged time required to reach maturity, estimates of tree maturation size remain very rare and we lack a global view on the generality and the shape of this trade‐off. Using seed production from five continents, we estimate tree maturation sizes for 486 tree species spanning tropical to boreal climates. Results show that a species' maturation size increases with maximum size, but in a non‐proportional way: the largest species begin reproduction at smaller sizes than would be expected if maturation were simply proportional to maximum size. Furthermore, the decrease in relative maturation size is steepest in cold climates. These findings on maturation size drivers are key to accurately represent forests' responses to disturbance and climate change. 
    more » « less
  3. Summary Climate models predict that everwet western Amazonian forests will face warmer and wetter atmospheric conditions, and increased cloud cover. It remains unclear how these changes will impact plant reproductive performance, such as flowering, which plays a central role in sustaining food webs and forest regeneration. Warmer and wetter nights may cause reduced flower production, via increased dark respiration rates or alteration in the reliability of flowering cue‐based processes. Additionally, more persistent cloud cover should reduce the amounts of solar irradiance, which could limit flower production.We tested whether interannual variation in flower production has changed in response to fluctuations in irradiance, rainfall, temperature, and relative humidity over 18 yrs in an everwet forest in Ecuador.Analyses of 184 plant species showed that flower production declined as nighttime temperature and relative humidity increased, suggesting that warmer nights and greater atmospheric water saturation negatively impacted reproduction. Species varied in their flowering responses to climatic variables but this variation was not explained by life form or phylogeny.Our results shed light on how plant communities will respond to climatic changes in this everwet region, in which the impacts of these changes have been poorly studied compared with more seasonal Neotropical areas. 
    more » « less
  4. Abstract Flowering and fruiting phenology have been infrequently studied in the ever‐wet hyperdiverse lowland forests of northwestern equatorial Amazonía. These Neotropical forests are typically called aseasonal with reference to climate because they are ever‐wet, and it is often assumed they are also aseasonal with respect to phenology. The physiological limits to plant reproduction imposed by water and light availability are difficult to disentangle in seasonal forests because these variables are often temporally correlated, and both are rarely studied together, challenging our understanding of their relative importance as drivers of reproduction. Here we report on the first long‐term study (18 years) of flowering and fruiting phenology in a diverse equatorial forest, Yasuní in eastern Ecuador, and the first to include a full suite of on‐site monthly climate data. Using twice monthly censuses of 200 traps and >1000 species, we determined whether reproduction at Yasuní is seasonal at the community and species levels and analyzed the relationships between environmental variables and phenology. We also tested the hypothesis that seasonality in phenology, if present, is driven primarily by irradiance. Both the community‐ and species‐level measures demonstrated strong reproductive seasonality at Yasuní. Flowering peaked in September–November and fruiting peaked in March–April, with a strong annual signal for both phenophases. Irradiance and rainfall were also highly seasonal, even though no month on average experienced drought (a month with <100 mm rainfall). Flowering was positively correlated with current or near‐current irradiance, supporting our hypothesis that the extra energy available during the period of peak irradiance drives the seasonality of flowering at Yasuní. As Yasuní is representative of lowland ever‐wet equatorial forests of northwestern Amazonía, we expect that reproductive phenology will be strongly seasonal throughout this region. 
    more » « less
  5. Abstract Phenology has long been hypothesized as an avenue for niche partitioning or interspecific facilitation, both promoting species coexistence. Tropical plant communities exhibit striking diversity in reproductive phenology, but many are also noted for large synchronous reproductive events. Here we study whether the phenology of seed fall in such communities is nonrandom, the temporal scales of phenological patterns, and ecological factors that drive reproductive phenology. We applied multivariate wavelet analysis to test for phenological synchrony versus compensatory dynamics (i.e., antisynchronous patterns where one species' decline is compensated by the rise of another) among species and across temporal scales. We used data from long‐term seed rain monitoring of hyperdiverse plant communities in the western Amazon. We found significant synchronous whole‐community phenology at multiple timescales, consistent with shared environmental responses or positive interactions among species. We also observed both compensatory and synchronous phenology within groups of species (confamilials) likely to share traits and seed dispersal mechanisms. Wind‐dispersed species exhibited significant synchrony at ~6‐month scales, suggesting these species might share phenological niches to match the seasonality of wind. Our results suggest that community phenology is shaped by shared environmental responses but that the diversity of tropical plant phenology may partly result from temporal niche partitioning. The scale‐specificity and time‐localized nature of community phenology patterns highlights the importance of multiple and shifting drivers of phenology. 
    more » « less
  6. Abstract Understanding the mechanisms that promote the coexistence of hundreds of species over small areas in tropical forest remains a challenge. Many tropical tree species are presumed to be functionally equivalent shade tolerant species but exist on a continuum of performance trade‐offs between survival in shade and the ability to quickly grow in sunlight. These trade‐offs can promote coexistence by reducing fitness differences.Variation in plant functional traits related to resource acquisition is thought to predict variation in performance among species, perhaps explaining community assembly across habitats with gradients in resource availability. Many studies have found low predictive power, however, when linking trait measurements to species demographic rates.Seedlings face different challenges recruiting on the forest floor and may exhibit different traits and/or performance trade‐offs than older individuals face in the eventual adult niche. Seed mass is the typical proxy for seedling success, but species also differ in cotyledon strategy (reserve vs. photosynthetic) or other leaf, stem and root traits. These can cause species with the same average seed mass to have divergent performance in the same habitat.We combined long‐term studies of seedling dynamics with functional trait data collected at a standard life‐history stage in three diverse neotropical forests to ask whether variation in coordinated suites of traits predicts variation among species in demographic performance.Across hundreds of species in Ecuador, Panama and Puerto Rico, we found seedlings displayed correlated suites of leaf, stem, and root traits, which strongly correlated with seed mass and cotyledon strategy. Variation among species in seedling functional traits, seed mass, and cotyledon strategy were strong predictors of trade‐offs in seedling growth and survival. These results underscore the importance of matching the ontogenetic stage of the trait measurement to the stage of demographic dynamics.Our findings highlight the importance of cotyledon strategy in addition to seed mass as a key component of seed and seedling biology in tropical forests because of the contribution of carbon reserves in storage cotyledons to reducing mortality rates and explaining the growth‐survival trade‐off among species.Synthesis: With strikingly consistent patterns across three tropical forests, we find strong evidence for the promise of functional traits to provide mechanistic links between seedling form and demographic performance. 
    more » « less
  7. Summary Vegetation demographic models (VDMs) endeavor to predict how global forests will respond to climate change. This requires simulating which trees, if any, are able to recruit under changing environmental conditions. We present a new recruitment scheme for VDMs in which functional‐type‐specific recruitment rates are sensitive to light, soil moisture and the productivity of reproductive trees.We evaluate the scheme by predicting tree recruitment for four tropical tree functional types under varying meteorology and canopy structure at Barro Colorado Island, Panama. We compare predictions to those of a current VDM, quantitative observations and ecological expectations.We find that the scheme improves the magnitude and rank order of recruitment rates among functional types and captures recruitment limitations in response to variable understory light, soil moisture and precipitation regimes.Our results indicate that adopting this framework will improve VDM capacity to predict functional‐type‐specific tree recruitment in response to climate change, thereby improving predictions of future forest distribution, composition and function. 
    more » « less
  8. Abstract Patterns of seed dispersal and seed mortality influence the spatial structure of plant communities and the local coexistence of competing species. Most seeds are dispersed in proximity to the parent tree, where mortality is also expected to be the highest, because of competition with siblings or the attraction of natural enemies. Whereas distance‐dependent mortality in the seed‐to‐seedling transition was often observed in tropical forests, few studies have attempted to estimate the shape of the survival‐distance curves, which determines whether the peak of seedling establishment occurs away from the parent tree (Janzen–Connell pattern) or if the peak attenuates but remains at the parent location (Hubbell pattern). In this study, we inferred the probability density of seed dispersal and two stages of seedling establishment (new recruits, and seedlings 20 cm or taller) with distance for 24 tree species present in the 50‐ha Forest Dynamics Plot of Barro Colorado Island, Panama. Using data from seed traps, seedling survey quadrats, and tree‐census records spanning the 1988–2014 period, we fit hierarchical Bayesian models including parameters for tree fecundity, the shape of the dispersal kernel, and overdispersion of seed or seedling counts. We combined predictions from multiple dispersal kernels to obtain more robust inferences. We find that Hubbell patterns are the most common and Janzen–Connell patterns are very rare among those species; that distance‐dependent mortality may be stronger in the seed stage, in the early recruit stage, or comparable in both; and that species with larger seeds experience less overall mortality and less distance‐dependent mortality. Finally, we describe how this modeling approach could be extended at a community scale to include less abundant species. 
    more » « less
  9. Free, publicly-accessible full text available August 1, 2026
  10. Abstract Forest community composition is the outcome of multiple forces, including those that increase taxonomic and functional divergence and those that promote convergence in traits. The mechanisms underlying these forces may not operate homogenously within communities; individuals of different species are never perfectly mixed, and thus, species tend to be surrounded and interact with different subsets of species. In fact, taxonomic and functional composition of neighborhoods of different focal species can be highly variable. Here, we examine whether mechanisms driving species‐level neighborhoods relate to intrinsic characteristics of focal species such as differences in life‐history and resource‐uptake strategies and in turn relate to species survival. We focus on two key characteristics: (1) seed mass, which defines a dominant axis of life‐history strategies related to stress tolerance, and (2) understory light preferences that sort species from light‐demanding pioneers to shade‐tolerant. We monitored seedling communities over 10 yr in Puerto Rico and calculated neighborhood trait dispersion in species‐level neighborhoods using seven functional traits. We examined whether species‐level characteristics, seed mass and preferred light conditions, influence patterns of functional dispersion in seedling neighborhoods using linear models. Then, we examined how species‐level functional neighborhoods impact seedling survival. We found that small‐ and large‐seeded species diverge in the type of functional neighborhoods they associate with. Large‐seeded species associate with neighbors that are more similar than expected in leaf economic traits, but more different than expected in seed mass and leaf area traits, while the opposite was found for small‐seeded species. This variation in species functional neighborhood was important in determining seedling survival. In sum, our results suggest that divergent and convergent forces do not operate homogenously over entire communities. Their relative role changes in space, and on a species‐by‐species basis, probably with a deterministic foundation linked to traits such as seed mass. 
    more » « less