skip to main content

Title: Unusual marine cyanobacteria/haptophyte symbiosis relies on N2 fixation even in N-rich environments
Abstract The microbial fixation of N 2 is the largest source of biologically available nitrogen (N) to the oceans. However, it is the most energetically expensive N-acquisition process and is believed inhibited when less energetically expensive forms, like dissolved inorganic N (DIN), are available. Curiously, the cosmopolitan N 2 -fixing UCYN-A/haptophyte symbiosis grows in DIN-replete waters, but the sensitivity of their N 2 fixation to DIN is unknown. We used stable isotope incubations, catalyzed reporter deposition fluorescence in-situ hybridization (CARD-FISH), and nanoscale secondary ion mass spectrometry (nanoSIMS), to investigate the N source used by the haptophyte host and sensitivity of UCYN-A N 2 fixation in DIN-replete waters. We demonstrate that under our experimental conditions, the haptophyte hosts of two UCYN-A sublineages do not assimilate nitrate (NO 3 − ) and meet little of their N demands via ammonium (NH 4 + ) uptake. Instead the UCYN-A/haptophyte symbiosis relies on UCYN-A N 2 fixation to supply large portions of the haptophyte’s N requirements, even under DIN-replete conditions. Furthermore, UCYN-A N 2 fixation rates, and haptophyte host carbon fixation rates, were at times stimulated by NO 3 − additions in N-limited waters suggesting a link between the activities of the bulk phytoplankton assemblage and the UCYN-A/haptophyte symbiosis. The results suggest N 2 fixation may be an evolutionarily viable strategy for diazotroph–eukaryote symbioses, even in N-rich coastal or high latitude waters.  more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ; ; ; ; ;
Date Published:
Journal Name:
The ISME Journal
Page Range / eLocation ID:
2395 to 2406
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biological dinitrogen (N2) fixation is an important source of nitrogen (N) in low-latitude open oceans. The unusual N2-fixing unicellular cyanobacteria (UCYN-A)/haptophyte symbiosis has been found in an increasing number of unexpected environments, including northern waters of the Danish Straight and Bering and Chukchi Seas. We used nanoscale secondary ion mass spectrometry (nanoSIMS) to measure15N2uptake into UCYN-A/haptophyte symbiosis and found that UCYN-A strains identical to low-latitude strains are fixing N2in the Bering and Chukchi Seas, at rates comparable to subtropical waters. These results show definitively that cyanobacterial N2fixation is not constrained to subtropical waters, challenging paradigms and models of global N2fixation. The Arctic is particularly sensitive to climate change, and N2fixation may increase in Arctic waters under future climate scenarios.

    more » « less
  2. The apparently obligate symbiosis between the diazotroph Candidatus Atelocyanobacterium thalassa (UCYN-A) and its haptophyte host, Braarudosphaera bigelowii , has recently been found to fix dinitrogen (N 2 ) in polar waters at rates (per cell) comparable to those observed in the tropical/subtropical oligotrophic ocean basins. This study presents the novel observation that this symbiosis increased in abundance during a wind-driven upwelling event along the Alaskan Beaufort shelfbreak. As upwelling relaxed, the relative abundance of B. bigelowii among eukaryotic phytoplankton increased most significantly in waters over the upper slope. As the host’s nitrogen demands are believed to be supplied primarily by UCYN-A, this response suggests that upwelling may enhance N 2 fixation as displaced coastal waters are advected offshore, potentially extending the duration of upwelling-induced phytoplankton blooms. Given that such events are projected to increase in intensity and number with ocean warming, upwelling-driven N 2 fixation as a feedback on climate merits investigation. 
    more » « less
  3. Hatzimanikatis, Vassily (Ed.)
    Marine nitrogen-fixing microorganisms are an important source of fixed nitrogen in oceanic ecosystems. The colonial cyanobacterium Trichodesmium and diatom symbionts were thought to be the primary contributors to oceanic N 2 fixation until the discovery of the unusual uncultivated symbiotic cyanobacterium UCYN-A ( Candidatus Atelocyanobacterium thalassa ). UCYN-A has atypical metabolic characteristics lacking the oxygen-evolving photosystem II, the tricarboxylic acid cycle, the carbon-fixation enzyme RuBisCo and de novo biosynthetic pathways for a number of amino acids and nucleotides. Therefore, it is obligately symbiotic with its single-celled haptophyte algal host. UCYN-A receives fixed carbon from its host and returns fixed nitrogen, but further insights into this symbiosis are precluded by both UCYN-A and its host being uncultured. In order to investigate how this syntrophy is coordinated, we reconstructed bottom-up genome-scale metabolic models of UCYN-A and its algal partner to explore possible trophic scenarios, focusing on nitrogen fixation and biomass synthesis. Since both partners are uncultivated and only the genome sequence of UCYN-A is available, we used the phylogenetically related Chrysochromulina tobin as a proxy for the host. Through the use of flux balance analysis (FBA), we determined the minimal set of metabolites and biochemical functions that must be shared between the two organisms to ensure viability and growth. We quantitatively investigated the metabolic characteristics that facilitate daytime N 2 fixation in UCYN-A and possible oxygen-scavenging mechanisms needed to create an anaerobic environment to allow nitrogenase to function. This is the first application of an FBA framework to examine the tight metabolic coupling between uncultivated microbes in marine symbiotic communities and provides a roadmap for future efforts focusing on such specialized systems. 
    more » « less
  4. Abstract

    The availability of fixed nitrogen (N) is an important factor limiting biological productivity in the oceans. In coastal waters, high dissolved inorganic N concentrations were historically thought to inhibit dinitrogen (N2) fixation, however, recent N2 fixation measurements and the presence of the N2-fixing UCYN-A/haptophyte symbiosis in nearshore waters challenge this paradigm. We characterized the contribution of UCYN-A symbioses to nearshore N2 fixation in the Southern California Current System (SCCS) by measuring bulk community and single-cell N2 fixation rates, as well as diazotroph community composition and abundance. UCYN-A1 and UCYN-A2 symbioses dominated diazotroph communities throughout the region during upwelling and oceanic seasons. Bulk N2 fixation was detected in most surface samples, with rates up to 23.0 ± 3.8 nmol N l−1 d−1, and was often detected at the deep chlorophyll maximum in the presence of nitrate (>1 µM). UCYN-A2 symbiosis N2 fixation rates were higher (151.1 ± 112.7 fmol N cell−1 d−1) than the UCYN-A1 symbiosis (6.6 ± 8.8 fmol N cell−1 d−1). N2 fixation by the UCYN-A1 symbiosis accounted for a majority of the measured bulk rates at two offshore stations, while the UCYN-A2 symbiosis was an important contributor in three nearshore stations. This report of active UCYN-A symbioses and broad mesoscale distribution patterns establishes UCYN-A symbioses as the dominant diazotrophs in the SCCS, where heterocyst-forming and unicellular cyanobacteria are less prevalent, and provides evidence that the two dominant UCYN-A sublineages are separate ecotypes.

    more » « less
  5. Dinitrogen (N2) fixation is carried out by specialized microbes, called diazotrophs, and is a major source of nitrogen supporting primary production in oligotrophic oceans. One of the best-characterized diazotroph habitats is the North Pacific Subtropical Gyre (NPSG), where warm, chronically N-limited surface waters promote year-round N2fixation. At Station ALOHA (A Long-Term Oligotrophic Habitat Assessment) in the NPSG, N2fixation is typically ascribed to conspicuous, filamentous cyanobacterial diazotrophs (TrichodesmiumandRichelia), unicellular free-livingCrocosphaera, and the UCYN-A/haptophyte symbiosis, based on using microscopy and quantitative PCR (qPCR). However, the diazotroph community in this ecosystem is diverse and includes non-cyanobacterial diazotrophs (NCDs). We investigated the diversity, depth distributions, and seasonality of diazotroph communities at Stn. ALOHA using high throughput sequencing (HTS) ofnifHgene fragments from samples collected throughout the euphotic zone (0-175 m) at near-monthly intervals from June 2013 to July 2016. The UCYN-A symbioses andTrichodesmiumsp. consistently had the highest relative abundances and seasonal patterns that corroborated qPCR-based analyses. Other prevalent community members included a newCrocosphaera-like species, and several NCDs affiliated with γ- and δ-proteobacteria. Notably, some of the NCDs appear to be stable components of the community at Stn. ALOHA, having also been reported in prior studies. Depth and temporal patterns in microdiversity within two major diazotroph groups (Trichodesmiumand UCYN-A) suggested that sub-populations are adapted to time- and depth-dependent environmental variation. A network analysis of the upper euphotic (0-75 m) HTS data identified two modules that reflect a diazotroph community structure with seasonal turnover between UCYN-A/Gamma A, andTrichodesmium/Crocosphaera. It also reveals the seasonality of several important cyanobacteria and NCDs about which little is known, including a putative δ-proteobacterial phylotype originally discovered at Stn. ALOHA. Collectively, these results underscore the importance of couplingnifHgene HTS with other molecular techniques to obtain a comprehensive view of diazotroph community composition in the marine environment and reveal several understudied diazotroph groups that may contribute to N2fixation in the NPSG.

    more » « less