skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 10:00 PM ET on Friday, December 8 until 2:00 AM ET on Saturday, December 9 due to maintenance. We apologize for the inconvenience.

Search for: All records

Award ID contains: 1763452

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Recently, Raman Spectroscopy (RS) was demonstrated to be a non-destructive way of cancer diagnosis, due to the uniqueness of RS measurements in revealing molecular biochemical changes between cancerous vs. normal tissues and cells. In order to design computational approaches for cancer detection, the quality and quantity of tissue samples for RS are important for accurate prediction. In reality, however, obtaining skin cancer samples is difficult and expensive due to privacy and other constraints. With a small number of samples, the training of the classifier is difficult, and often results in overfitting. Therefore, it is important to have more samples to better train classifiers for accurate cancer tissue classification. To overcome these limitations, this paper presents a novel generative adversarial network based skin cancer tissue classification framework. Specifically, we design a data augmentation module that employs a Generative Adversarial Network (GAN) to generate synthetic RS data resembling the training data classes. The original tissue samples and the generated data are concatenated to train classification modules. Experiments on real-world RS data demonstrate that (1) data augmentation can help improve skin cancer tissue classification accuracy, and (2) generative adversarial network can be used to generate reliable synthetic Raman spectroscopic data.

    more » « less
  2. Free, publicly-accessible full text available February 27, 2024
  3. Free, publicly-accessible full text available December 17, 2023
  4. Free, publicly-accessible full text available December 17, 2023
  5. Contrastive self-supervised learning has been successfully used in many domains, such as images, texts, graphs, etc., to learn features without requiring label information. In this paper, we propose a new local contrastive feature learning (LoCL) framework, and our theme is to learn local patterns/features from tabular data. In order to create a niche for local learning, we use feature correlations to create a maximum-spanning tree, and break the tree into feature subsets, with strongly correlated features being assigned next to each other. Convolutional learning of the features is used to learn latent feature space, regulated by contrastive and reconstruction losses. Experiments on public tabular datasets show the effectiveness of the proposed method versus state-of-the-art baseline methods. 
    more » « less
  6. Nonoverlapping sequential pattern mining is an important type of sequential pattern mining (SPM) with gap constraints, which not only can reveal interesting patterns to users but also can effectively reduce the search space using the Apriori (anti-monotonicity) property. However, the existing algorithms do not focus on attributes of interest to users, meaning that existing methods may discover many frequent patterns that are redundant. To solve this problem, this article proposes a task called nonoverlapping three-way sequential pattern (NTP) mining, where attributes are categorized according to three levels of interest: strong, medium, and weak interest. NTP mining can effectively avoid mining redundant patterns since the NTPs are composed of strong and medium interest items. Moreover, NTPs can avoid serious deviations (the occurrence is significantly different from its pattern) since gap constraints cannot match with strong interest patterns. To mine NTPs, an effective algorithm is put forward, called NTP-Miner, which applies two main steps: support (frequency occurrence) calculation and candidate pattern generation. To calculate the support of an NTP, depth-first and backtracking strategies are adopted, which do not require creating a whole Nettree structure, meaning that many redundant nodes and parent–child relationships do not need to be created. Hence, time and space efficiency is improved. To generate candidate patterns while reducing their number, NTP-Miner employs a pattern join strategy and only mines patterns of strong and medium interest. Experimental results on stock market and protein datasets show that NTP-Miner not only is more efficient than other competitive approaches but can also help users find more valuable patterns. More importantly, NTP mining has achieved better performance than other competitive methods in clustering tasks. Algorithms and data are available at: . 
    more » « less