skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 10:00 PM ET on Friday, February 6 until 10:00 AM ET on Saturday, February 7 due to maintenance. We apologize for the inconvenience.


Title: FedDNA: Federated learning using dynamic node alignment
Federated Learning (FL), as a new computing framework, has received significant attentions recently due to its advantageous in preserving data privacy in training models with superb performance. During FL learning, distributed sites first learn respective parameters. A central site will consolidate learned parameters, using average or other approaches, and disseminate new weights across all sites to carryout next round of learning. The distributed parameter learning and consolidation repeat in an iterative fashion until the algorithm converges or terminates. Many FL methods exist to aggregate weights from distributed sites, but most approaches use a static node alignment approach, where nodes of distributed networks are statically assigned, in advance, to match nodes and aggregate their weights. In reality, neural networks, especially dense networks, have nontransparent roles with respect to individual nodes. Combined with random nature of the networks, static node matching often does not result in best matching between nodes across sites. In this paper, we propose, FedDNA, adynamic node alignmentfederated learning algorithm. Our theme is to find best matching nodes between different sites, and then aggregate weights of matching nodes for federated learning. For each node in a neural network, we represent its weight values as a vector, and use a distance function to find most similar nodes,i.e., nodes with the smallest distance from other sides. Because finding best matching across all sites are computationally expensive, we further design a minimum spanning tree based approach to ensure that a node from each site will have matched peers from other sites, such that the total pairwise distances across all sites are minimized. Experiments and comparisons demonstrate that FedDNA outperforms commonly used baseline, such as FedAvg, for federated learning.  more » « less
Award ID(s):
1763452
PAR ID:
10548458
Author(s) / Creator(s):
;
Editor(s):
Donta, Praveen Kumar
Publisher / Repository:
Public Library of Science (PLOS)
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
7
ISSN:
1932-6203
Page Range / eLocation ID:
e0288157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to over-paramterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. 
    more » « less
  2. Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners, which has been applied in various applications such as social recommendation and financial fraud detection. Inherited from generic Federated Learning (FL), FGL similarly has the data heterogeneity issue where the label distribution may vary significantly for distributed graph data across clients. For instance, a client can have the majority of nodes from a class, while another client may have only a few nodes from the same class. This issue results in divergent local objectives and impairs FGL convergence for node-level tasks, especially for node classification. Moreover, FGL also encounters a unique challenge for the node classification task: the nodes from a minority class in a client are more likely to have biased neighboring information, which prevents FGL from learning expressive node embeddings with Graph Neural Networks (GNNs). To grapple with the challenge, we propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space and aligns them to obtain global structure proxies in the server. Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification. To achieve this, FedSpray trains a global feature-structure encoder and generates unbiased soft targets with structure proxies to regularize local training of GNN models in a personalized way. We conduct extensive experiments over four datasets, and experiment results validate the superiority of FedSpray compared with other baselines. Our code is available at https://github.com/xbfu/FedSpray. 
    more » « less
  3. Meila, Marina; Zhang, Tong (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks. 
    more » « less
  4. Frasch, Martin G. (Ed.)
    With the wider availability of healthcare data such as Electronic Health Records (EHR), more and more data-driven based approaches have been proposed to improve the quality-of-care delivery. Predictive modeling, which aims at building computational models for predicting clinical risk, is a popular research topic in healthcare analytics. However, concerns about privacy of healthcare data may hinder the development of effective predictive models that are generalizable because this often requires rich diverse data from multiple clinical institutions. Recently, federated learning (FL) has demonstrated promise in addressing this concern. However, data heterogeneity from different local participating sites may affect prediction performance of federated models. Due to acute kidney injury (AKI) and sepsis’ high prevalence among patients admitted to intensive care units (ICU), the early prediction of these conditions based on AI is an important topic in critical care medicine. In this study, we take AKI and sepsis onset risk prediction in ICU as two examples to explore the impact of data heterogeneity in the FL framework as well as compare performances across frameworks. We built predictive models based on local, pooled, and FL frameworks using EHR data across multiple hospitals. The local framework only used data from each site itself. The pooled framework combined data from all sites. In the FL framework, each local site did not have access to other sites’ data. A model was updated locally, and its parameters were shared to a central aggregator, which was used to update the federated model’s parameters and then subsequently, shared with each site. We found models built within a FL framework outperformed local counterparts. Then, we analyzed variable importance discrepancies across sites and frameworks. Finally, we explored potential sources of the heterogeneity within the EHR data. The different distributions of demographic profiles, medication use, and site information contributed to data heterogeneity. 
    more » « less
  5. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks. 
    more » « less