skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, November 15 until 2:00 AM ET on Saturday, November 16 due to maintenance. We apologize for the inconvenience.


Title: FedDNA: Federated learning using dynamic node alignment
Federated Learning (FL), as a new computing framework, has received significant attentions recently due to its advantageous in preserving data privacy in training models with superb performance. During FL learning, distributed sites first learn respective parameters. A central site will consolidate learned parameters, using average or other approaches, and disseminate new weights across all sites to carryout next round of learning. The distributed parameter learning and consolidation repeat in an iterative fashion until the algorithm converges or terminates. Many FL methods exist to aggregate weights from distributed sites, but most approaches use a static node alignment approach, where nodes of distributed networks are statically assigned, in advance, to match nodes and aggregate their weights. In reality, neural networks, especially dense networks, have nontransparent roles with respect to individual nodes. Combined with random nature of the networks, static node matching often does not result in best matching between nodes across sites. In this paper, we propose, FedDNA, adynamic node alignmentfederated learning algorithm. Our theme is to find best matching nodes between different sites, and then aggregate weights of matching nodes for federated learning. For each node in a neural network, we represent its weight values as a vector, and use a distance function to find most similar nodes,i.e., nodes with the smallest distance from other sides. Because finding best matching across all sites are computationally expensive, we further design a minimum spanning tree based approach to ensure that a node from each site will have matched peers from other sites, such that the total pairwise distances across all sites are minimized. Experiments and comparisons demonstrate that FedDNA outperforms commonly used baseline, such as FedAvg, for federated learning.  more » « less
Award ID(s):
1763452
NSF-PAR ID:
10548458
Author(s) / Creator(s):
;
Editor(s):
Donta, Praveen Kumar
Publisher / Repository:
Public Library of Science (PLOS)
Date Published:
Journal Name:
PLOS ONE
Volume:
18
Issue:
7
ISSN:
1932-6203
Page Range / eLocation ID:
e0288157
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Federated Graph Learning (FGL) aims to learn graph learning models over graph data distributed in multiple data owners, which has been applied in various applications such as social recommendation and financial fraud detection. Inherited from generic Federated Learning (FL), FGL similarly has the data heterogeneity issue where the label distribution may vary significantly for distributed graph data across clients. For instance, a client can have the majority of nodes from a class, while another client may have only a few nodes from the same class. This issue results in divergent local objectives and impairs FGL convergence for node-level tasks, especially for node classification. Moreover, FGL also encounters a unique challenge for the node classification task: the nodes from a minority class in a client are more likely to have biased neighboring information, which prevents FGL from learning expressive node embeddings with Graph Neural Networks (GNNs). To grapple with the challenge, we propose FedSpray, a novel FGL framework that learns local class-wise structure proxies in the latent space and aligns them to obtain global structure proxies in the server. Our goal is to obtain the aligned structure proxies that can serve as reliable, unbiased neighboring information for node classification. To achieve this, FedSpray trains a global feature-structure encoder and generates unbiased soft targets with structure proxies to regularize local training of GNN models in a personalized way. We conduct extensive experiments over four datasets, and experiment results validate the superiority of FedSpray compared with other baselines. Our code is available at https://github.com/xbfu/FedSpray. 
    more » « less
  2. null (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. This paper presents a new class of convergence analysis for FL, Federated Learning Neural Tangent Kernel (FL-NTK), which corresponds to over-paramterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. 
    more » « less
  3. Meila, Marina ; Zhang, Tong (Ed.)
    Federated Learning (FL) is an emerging learning scheme that allows different distributed clients to train deep neural networks together without data sharing. Neural networks have become popular due to their unprecedented success. To the best of our knowledge, the theoretical guarantees of FL concerning neural networks with explicit forms and multi-step updates are unexplored. Nevertheless, training analysis of neural networks in FL is non-trivial for two reasons: first, the objective loss function we are optimizing is non-smooth and non-convex, and second, we are even not updating in the gradient direction. Existing convergence results for gradient descent-based methods heavily rely on the fact that the gradient direction is used for updating. The current paper presents a new class of convergence analysis for FL, Federated Neural Tangent Kernel (FL-NTK), which corresponds to overparamterized ReLU neural networks trained by gradient descent in FL and is inspired by the analysis in Neural Tangent Kernel (NTK). Theoretically, FL-NTK converges to a global-optimal solution at a linear rate with properly tuned learning parameters. Furthermore, with proper distributional assumptions, FL-NTK can also achieve good generalization. The proposed theoretical analysis scheme can be generalized to more complex neural networks. 
    more » « less
  4. Real-world networked systems often show dynamic properties with continuously evolving network nodes and topology over time. When learning from dynamic networks, it is beneficial to correlate all temporal networks to fully capture the similarity/relevance between nodes. Recent work for dynamic network representation learning typically trains each single network independently and imposes relevance regularization on the network learning at different time steps. Such a snapshot scheme fails to leverage topology similarity between temporal networks for progressive training. In addition to the static node relationships within each network, nodes could show similar variation patterns (e.g., change of local structures) within the temporal network sequence. Both static node structures and temporal variation patterns can be combined to better characterize node affinities for unified embedding learning. In this paper, we propose Graph Attention Evolving Networks (GAEN) for dynamic network embedding with preserved similarities between nodes derived from their temporal variation patterns. Instead of training graph attention weights for each network independently, we allow model weights to share and evolve across all temporal networks based on their respective topology discrepancies. Experiments and validations, on four real-world dynamic graphs, demonstrate that GAEN outperforms the state-of-the-art in both link prediction and node classification tasks.

     
    more » « less
  5. Network alignment (NA) is a fundamental problem in many application domains – from social networks, through biology and communications, to neuroscience. The main objective is to identify common nodes and most similar connections across multiple networks (resp. graphs). Many of the existing efforts focus on efficient anchor node linkage by leveraging various features and optimizing network mapping functions with the pairwise similarity between anchor nodes. Despite the recent advances, there still exist two kinds of challenges: (1) entangled node embeddings, arising from the contradictory goals of NA: embedding proximal nodes in a closed form for representation in a single network vs. discriminating among them when mapping the nodes across networks; and (2) lack of interpretability about the node matching and alignment, essential for understanding prediction tasks. We propose dNAME (disentangled Network Alignment with Matching Explainability) – a novel solution for NA in heterogeneous networks settings, based on a matching technique that embeds nodes in a disentangled and faithful manner. The NA task is cast as an adversarial optimization problem which learns a proximity-preserving model locally around the anchor nodes, while still being discriminative. We also introduce a method to explain our semi-supervised model with the theory of robust statistics, by tracing the importance of each anchor node and its explanations on the NA performance. This is extensible to many other NA methods, as it provides model interpretability. Experiments conducted on several public datasets show that dNAME outperforms the state-of-the-art methods in terms of both network alignment precision and node matching ranking. 
    more » « less