Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Natural gas at remote locations would greatly benefit from on-site processing using modular technologies such as dehydroaromatization (DHA). This work models an intensified DHA process to increase product yield and methane conversion by coupling the reactor with a chemical looping unit that effectively separates hydrogen through a redox cycle and a temperature swing adsorption process to remove the aromatics and water and recycle unconverted methane. We postulate dynamic models and steady-state surrogate models to analyze and optimize the production of the aromatic product. The optimum methane conversion of 48% and the aromatic yield of 42% occur at a recycle ratio of 0.47 and a reactor temperature of 725 degrees C.more » « lessFree, publicly-accessible full text available December 25, 2025
-
We report that boron -containing zeolite chabazite (B-CHA) catalyzes the oxidative dehydrogenation of ethane (ODHE) with high selectivity (>70 %) and excellent stability in the temperature range of 500-600 degrees C. ODHE rates, in fact, increase over time on stream. Ethane consumption rate has an apparent activation energy of 126 kJ mol(-1), with Langmuirian dependence on the oxygen partial pressure and first-order dependence on the ethane partial pressure. Investigation of the catalyst before and after reaction by one-dimensional B-11 magic angle spinning (1D B-11 MAS) nuclear magnetic resonance (NMR), two-dimensional B-11 multiple quantum MAS (2D B-11 MQMAS) NMR spectroscopy, and Fourier transform infrared (FTIR) spectroscopy identifies the B-OH group in defect trigonal boron (B(OSi)(OH)(2)) as the species initiating the ODHE reaction. This result could open a pathway to develop suitable catalysts for industrial ethylene production with lower greenhouse gas emissions than current non -oxidative dehydrogenation routes.more » « less
-
Indium on silica, alumina and zeolite chabazite (CHA), with a range of In/Al ratios and Si/Al ratios, have been investigated to understand the effect of the support on indium speciation and its corresponding influence on propane dehydrogenation (PDH). It is found that In 2 O 3 is formed on the external surface of the zeolite crystal after the addition of In(NO 3 ) 3 to H-CHA by incipient wetness impregnation and calcination. Upon reduction in H 2 gas (550 °C), indium displaces the proton in Brønsted acid sites (BASs), forming extra-framework In + species (In-CHA). A stoichiometric ratio of 1.5 of formed H 2 O to consumed H 2 during H 2 pulsed reduction experiments confirms the indium oxidation state of +1. The reduced indium is different from the indium species observed on samples of 10In/SiO 2 , 10In/Al 2 O 3 ( i.e. , 10 wt% indium) and bulk In 2 O 3 , in which In 2 O 3 was reduced to In(0), as determined from the X-ray diffraction patterns of the product, H 2 temperature-programmed reduction (H 2 -TPR) profiles, pulse reactor investigations and in situ transmission FTIR spectroscopy. The BASs in H-CHA facilitate the formation and stabilization of In + cations in extra-framework positions, and prevent the deep reduction of In 2 O 3 to In(0). In + cations in the CHA zeolite can be oxidized with O 2 to form indium oxide species and can be reduced again with H 2 quantitatively. At comparable conversion, In-CHA shows better stability and C 3 H 6 selectivity (∼85%) than In 2 O 3 , 10In/SiO 2 and 10In/Al 2 O 3 , consistent with a low C 3 H 8 dehydrogenation activation energy (94.3 kJ mol −1 ) and high C 3 H 8 cracking activation energy (206 kJ mol −1 ) in the In-CHA catalyst. A high Si/Al ratio in CHA seems beneficial for PDH by decreasing the fraction of CHA cages containing multiple In + cations. Other small-pore zeolite-stabilized metal cation sites could form highly stable and selective catalysts for this and facilitate other alkane dehydrogenation reactions.more » « less
An official website of the United States government
