Abstract Estimating realistic potential yields by crop type and region is challenging; such yields depend on both biophysical characteristics (e.g., soil characteristics, climate, etc.), and the crop management practices available in any site or region (e.g., mechanization, irrigation, crop cultivars). A broad body of literature has assessed potential yields for selected crops and regions, using several strategies. In this study we first analyze future potential yields of major crop types globally by two different estimation methods, one of which is based on historical observed yields (“Empirical”), while the other is based on biophysical conditions (“Simulated”). Potential yields by major crop and region are quite different between the two methods; in particular, Simulated potential yields are typically 200% higher than Empirical potential yields in tropical regions for major crops. Applying both of these potential yields in yield gap closure scenarios in a global agro-economic model, GCAM, the two estimates of future potential yields lead to very different outcomes for the agricultural sector globally. In the Simulated potential yield closure scenario, Africa, Asia, and South America see comparatively favorable outcomes for agricultural sustainability over time: low land use change emissions, low crop prices, and high levels of self-sufficiency. In contrast, the Empirical potential yield scenario is characterized by a heavy reliance on production and exports in temperate regions that currently practice industrial agriculture. At the global level, this scenario has comparatively high crop commodity prices, and more land allocated to crop production (and associated land use change emissions) than either the baseline or Simulated potential yield scenarios. This study highlights the importance of the choice of methods of estimating potential yields for agro-economic modeling.
more »
« less
Heat stress on agricultural workers exacerbates crop impacts of climate change
Abstract The direct impacts of climate change on crop yields and human health are individually well-studied, but the interaction between the two have received little attention. Here we analyze the consequences of global warming for agricultural workers and the crops they cultivate using a global economic model (GTAP) with explicit treatment of the physiological impacts of heat stress on humans’ ability to work. Based on two metrics of heat stress and two labor functions, combined with a meta-analysis of crop yields, we provide an analysis of climate, impacts both on agricultural labor force, as well as on staple crop yields, thereby accounting for the interacting effect of climate change on both land and labor. Here we analyze the two sets of impacts on staple crops, while also expanding the labor impacts to highlight the potential importance on non-staple crops. We find, worldwide, labor and yield impacts within staple grains are equally important at +3∘C warming, relative to the 1986–2005 baseline. Furthermore, the widely overlooked labor impacts are dominant in two of the most vulnerable regions: sub-Saharan Africa and Southeast Asia. In those regions, heat stress with 3∘C global warming could reduce labor capacity in agriculture by 30%–50%, increasing food prices and requiring much higher levels of employment in the farm sector. The global welfare loss at this level of warming could reach $136 billion, with crop prices rising by 5%, relative to baseline.
more »
« less
- PAR ID:
- 10304413
- Publisher / Repository:
- IOP Publishing
- Date Published:
- Journal Name:
- Environmental Research Letters
- Volume:
- 16
- Issue:
- 4
- ISSN:
- 1748-9326
- Page Range / eLocation ID:
- Article No. 044020
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Global crop production faces increasing threats from the rise in frequency, duration, and intensity of drought and heat stress events due to climate change. Most staple food crops, including wheat, rice, soybean, and corn that provide over half of the world’s caloric intake, are not well adapted to withstand heat or drought. Efforts to breed or engineer stress-tolerant crops have had limited success due to the complexity of tolerance mechanisms and the variability of agricultural environments. Effective solutions require a shift towards fundamental research that incorporates realistic agricultural settings and focuses on practical outcomes for farmers. This review explores the genetic and environmental factors affecting heat and drought tolerance in major crops, examines the physiological and molecular mechanisms underlying these stress responses, and evaluates the limitations of current breeding programs and models. It also discusses emerging technologies and approaches that could enhance crop resilience, such as synthetic biology, advanced breeding techniques, and high-throughput phenotyping. Finally, this review emphasizes the need for interdisciplinary research and collaboration with stakeholders to translate fundamental research into practical agricultural solutions.more » « less
-
Abstract US maize and soy production have increased rapidly since the mid-20th century. While global warming has raised temperatures in most regions over this time period, trends in extreme heat have been smaller over US croplands, reducing crop-damaging high temperatures and benefiting maize and soy yields. Here we show that agricultural intensification has created a crop-climate feedback in which increased crop production cools local climate, further raising crop yields. We find that maize and soy production trends have driven cooling effects approximately as large as greenhouse gas induced warming trends in extreme heat over the central US and substantially reduced them over the southern US, benefiting crops in all regions. This reduced warming has boosted maize and soy yields by 3.3 (2.7–3.9; 13.7%–20.0%) and 0.6 (0.4–0.7; 7.5%–13.7%) bu/ac/decade, respectively, between 1981 and 2019. Our results suggest that if maize and soy production growth were to stagnate, the ability of the crop-climate feedback to mask warming would fade, exposing US crops to more harmful heat extremes.more » « less
-
Abstract Increases in population exposure to humid heat extremes in agriculturally-dependent areas of the world highlights the importance of understanding how the location and timing of humid heat extremes intersects with labor-intensive agricultural activities. Agricultural workers are acutely vulnerable to heat-related health and productivity impacts as a result of the outdoor and physical nature of their work and by compounding socio-economic factors. Here, we identify the regions, crops, and seasons when agricultural workers experience the highest hazard from extreme humid heat. Using daily maximum wet-bulb temperature data, and region-specific agricultural calendars and cropland area for 12 crops, we quantify the number of extreme humid heat days during the planting and harvesting seasons for each crop between 1979–2019. We find that rice, an extremely labor-intensive crop, and maize croplands experienced the greatest exposure to dangerous humid heat (integrating cropland area exposed to >27 °C wet-bulb temperatures), with 2001–2019 mean rice and maize cropland exposure increasing 1.8 and 1.9 times the 1979–2000 mean exposure, respectively. Crops in socio-economically vulnerable regions, including Southeast Asia, equatorial South America, the Indo-Gangetic Basin, coastal Mexico, and the northern coast of the Gulf of Guinea, experience the most frequent exposure to these extremes, in certain areas exceeding 60 extreme humid heat days per year when crops are being cultivated. They also experience higher trends relative to other world regions, with certain areas exceeding a 15 day per decade increase in extreme humid heat days. Our crop and location-specific analysis of extreme humid heat hazards during labor-intensive agricultural seasons can inform the design of policies and efforts to reduce the adverse health and productivity impacts on this vulnerable population that is crucial to the global food system.more » « less
-
Abstract Manual outdoor work is essential in many agricultural systems. Climate change will make such work more stressful in many regions due to heat exposure. The physical work capacity metric (PWC) is a physiologically based approach that estimates an individual's work capacity relative to an environment without any heat stress. We computed PWC under recent past and potential future climate conditions. Daily values were computed from five earth system models for three emission scenarios (SSP1‐2.6, SSP3‐7.0, and SSP5‐8.5) and three time periods: 1991–2010 (recent past), 2041–2060 (mid‐century) and 2081–2100 (end‐century). Average daily PWC values were aggregated for the entire year, the growing season, and the warmest 90‐day period of the year. Under recent past climate conditions, the growing season PWC was below 0.86 (86% of full work capacity) on half the current global cropland. With end‐century/SSP5‐8.5 thermal conditions this value was reduced to 0.7, with most affected crop‐growing regions in Southeast and South Asia, West and Central Africa, and northern South America. Average growing season PWC could falls below 0.4 in some important food production regions such as the Indo‐Gangetic plains in Pakistan and India. End‐century PWC reductions were substantially greater than mid‐century reductions. This paper assesses two potential adaptions—reducing direct solar radiation impacts with shade or working at night and reducing the need for hard physical labor with increased mechanization. Removing the effect of direct solar radiation impacts improved PWC values by 0.05 to 0.10 in the hottest periods and regions. Adding mechanization to increase horsepower (HP) per hectare to levels similar to those in some higher income countries would require a 22% increase in global HP availability with Sub‐Saharan Africa needing the most. There may be scope for shifting to less labor‐intensive crops or those with labor peaks in cooler periods or shift work to early morning.more » « less
An official website of the United States government
