skip to main content


Search for: All records

Award ID contains: 1806523

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Wavelength transduction of single-photon signals is indispensable to networked quantum applications, particularly those incorporating quantum memories. Lithium niobate nanophotonic devices have demonstrated favorable linear, nonlinear, and electro-optical properties to deliver this crucial function while offering superior efficiency, integrability, and scalability. Yet, their quantum noise level—a crucial metric for any single-photon-based application—has yet to be investigated. In this work, we report the first, to the best of our knowledge, study with the focus on telecom to near-visible conversion driven by a small detuned telecom pump for practical considerations in distributed quantum processing over fiber networks. Our results find the noise level to be on the order of10−<#comment/>4photons per time-frequency mode for high conversion, allowing faithful pulsed operations. Through carefully analyzing the origins of such noise and each’s dependence on the pump power and wavelength detuning, we have also identified a formula for noise suppression to10−<#comment/>5photons per mode. Our results assert a viable, low-cost, and modular approach to networked quantum processing and beyond using lithium niobate nanophotonics.

     
    more » « less
  2. null (Ed.)
  3. null (Ed.)