skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1807590

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achieves a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices. 
    more » « less
  2. The recent comment on our previously published article questioned the novelty and computational efficiency of our work. Here we respond by restating the novelty and scientific value of our work as well as showing why the specific alternative methods stated in the comment are unlikely to outperform the methods we compare for metasurface applications involving high refractive index particles near high refractive index substrates. 
    more » « less
  3. Lens-free microscopes can utilize holographic reconstruction techniques to recover the image of an object from the digitally recorded superposition of an unperturbed plane wave and a wave scattered by the object. Image reconstruction most commonly relies on the scalar angular spectrum method (ASM). While fast, the scalar ASM can be inaccurate for nanoscale objects, either because of the scalar approximation, or more generally, because it only models field propagation and not light-matter interaction, including inter-particle coupling. Here we evaluate the accuracy of the scalar ASM when combined with three different light-matter interaction models for computing the far-field light scattered by random arrays of gold and polystyrene nanoparticles. Among the three models—a dipole-matched transmission model, an optical path length model, and a binary amplitude model—we find that which model is most accurate depends on the nanoparticle material and packing density. For polystyrene particles at any packing density, there is always at least one model with error below 20%, while for gold nanoparticles with 40% or 50% surface coverage, there are no models that can provide errors better than 30%. The ASM error is determined in comparison to a discrete dipole approximation model, which is more computationally efficient than other full-wave modeling techniques. The knowledge of when and how the ASM fails can serve as a first step toward improved resolution in lens-free reconstruction and can also be applied to other random nanoparticle array applications such as lens-based super-resolution imaging, sub-diffraction beam focusing, and biomolecular sensing. 
    more » « less
  4. Abstract Three-dimensional structure fabrication using discrete building blocks provides a versatile pathway for the creation of complex nanophotonic devices. The processing of individual components can generally support high-resolution, multiple-material, and variegated structures that are not achievable in a single step using top-down or hybrid methods. In addition, these methods are additive in nature, using minimal reagent quantities and producing little to no material waste. In this article, we review the most promising technologies that build structures using the placement of discrete components, focusing on laser-induced transfer, light-directed assembly, and inkjet printing. We discuss the underlying principles and most recent advances for each technique, as well as existing and future applications. These methods serve as adaptable platforms for the next generation of functional three-dimensional nanophotonic structures. 
    more » « less