skip to main content


Title: Assembly of multicomponent structures from hundreds of micron-scale building blocks using optical tweezers
Abstract

The fabrication of three-dimensional (3D) microscale structures is critical for many applications, including strong and lightweight material development, medical device fabrication, microrobotics, and photonic applications. While 3D microfabrication has seen progress over the past decades, complex multicomponent integration with small or hierarchical feature sizes is still a challenge. In this study, an optical positioning and linking (OPAL) platform based on optical tweezers is used to precisely fabricate 3D microstructures from two types of micron-scale building blocks linked by biochemical interactions. A computer-controlled interface with rapid on-the-fly automated recalibration routines maintains accuracy even after placing many building blocks. OPAL achieves a 60-nm positional accuracy by optimizing the molecular functionalization and laser power. A two-component structure consisting of 448 1-µm building blocks is assembled, representing the largest number of building blocks used to date in 3D optical tweezer microassembly. Although optical tweezers have previously been used for microfabrication, those results were generally restricted to single-material structures composed of a relatively small number of larger-sized building blocks, with little discussion of critical process parameters. It is anticipated that OPAL will enable the assembly, augmentation, and repair of microstructures composed of specialty micro/nanomaterial building blocks to be used in new photonic, microfluidic, and biomedical devices.

 
more » « less
Award ID(s):
1807590
NSF-PAR ID:
10249297
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Microsystems & Nanoengineering
Volume:
7
Issue:
1
ISSN:
2055-7434
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Biological photonic structures can precisely control light propagation, scattering, and emission via hierarchical structures and diverse chemistry, enabling biophotonic applications for transparency, camouflaging, protection, mimicking and signaling. Corresponding natural polymers are promising building blocks for constructing synthetic multifunctional photonic structures owing to their renewability, biocompatibility, mechanical robustness, ambient processing conditions, and diverse surface chemistry. In this review, we provide a summary of the light phenomena in biophotonic structures found in nature, the selection of corresponding biopolymers for synthetic photonic structures, the fabrication strategies for flexible photonics, and corresponding emerging photonic-related applications. We introduce various photonic structures, including multi-layered, opal, and chiral structures, as well as photonic networks in contrast to traditionally considered light absorption and structural photonics. Next, we summarize the bottom-up and top-down fabrication approaches and physical properties of organized biopolymers and highlight the advantages of biopolymers as building blocks for realizing unique bioenabled photonic structures. Furthermore, we consider the integration of synthetic optically active nanocomponents into organized hierarchical biopolymer frameworks for added optical functionalities, such as enhanced iridescence and chiral photoluminescence. Finally, we present an outlook on current trends in biophotonic materials design and fabrication, including current issues, critical needs, as well as promising emerging photonic applications. 
    more » « less
  2. Abstract High-precision placement of rare-earth ions in scalable silicon-based nanostructured materials exhibiting high photoluminescence (PL) emission, photostable and polarized emission, and near-radiative-limited excited state lifetimes can serve as critical building blocks toward the practical implementation of devices in the emerging fields of nanophotonics and quantum photonics. Introduced herein are optical nanostructures composed of arrays of ultrathin silicon carbide (SiC) nanowires (NWs) that constitute scalable one-dimensional NW-based photonic crystal (NW-PC) structures. The latter are based on a novel, fab-friendly, nanofabrication process. The NW arrays are grown in a self-aligned manner through chemical vapor deposition. They exhibit a reduction in defect density as determined by low-temperature time-resolved PL measurements. Additionally, the NW-PC structures enable the positioning of erbium (Er 3+ ) ions with an accuracy of 10 nm, an improvement on the current state-of-the-art ion implantation processes, and allow strong coupling of Er 3+ ions in NW-PC. The NW-PC structure is pivotal in engineering the Er 3+ -induced 1540-nm emission, which is the telecommunication wavelength used in optical fibers. An approximately 60-fold increase in the room-temperature Er 3+ PL emission is observed in NW-PC compared to its thin-film analog in the linear pumping regime. Furthermore, 22 times increase in the Er 3+ PL intensity per number of exited Er ions in NW-PC was observed at saturation while using 20 times lower pumping power. The NW-PC structures demonstrate broadband and efficient excitation characteristics for Er 3+ , with an absorption cross-section (~2 × 10 −18 cm 2 ) two-order larger than typical benchmark values for direct absorption in rare-earth-doped quantum materials. Experimental and simulation results show that the Er 3+ PL is photostable at high pumping power and polarized in NW-PC and is modulated with NW-PC lattice periodicity. The observed characteristics from these technologically friendly nanophotonic structures provide a promising route to the development of scalable nanophotonics and formation of single-photon emitters in the telecom optical wavelength band. 
    more » « less
  3. Abstract

    While vat photopolymerization has many advantages over soft lithography in fabricating microfluidic devices, including efficiency and shape complexity, it has difficulty achieving well-controlled micrometer-sized (smaller than 100 μm) channels in the layer building direction. The considerable light penetration depth of transparent resin leads to over-curing that inevitably cures the residual resin inside flow channels, causing clogs. In this paper, a 3D printing process — in-situ transfer vat photopolymerization is reported to solve this critical over-curing issue in fabricating microfluidic devices. We demonstrate microchannels with highZ-resolution (within 10 μm level) and high accuracy (within 2 μm level) using a general method with no requirements on liquid resins such as reduced transparency nor leads to a reduced fabrication speed. Compared with all other vat photopolymerization-based techniques specialized for microfluidic channel fabrication, our universal approach is compatible with commonly used 405 nm light sources and commercial photocurable resins. The process has been verified by multifunctional devices, including 3D serpentine microfluidic channels, microfluidic valves, and particle sorting devices. This work solves a critical barrier in 3D printing microfluidic channels using the high-speed vat photopolymerization process and broadens the material options. It also significantly advances vat photopolymerization’s use in applications requiring small gaps with high accuracy in theZ-direction.

     
    more » « less
  4. Abstract

    Animal silks, consisting of pure protein components, offer an extraordinary combination of strength, elongation, and toughness, exceeding most engineered materials. The secret to this success is their unique nanoarchitectures formed through the hierarchical self‐assembly of silk proteins. This natural process contrasts the production of artificial silk materials, which usually are directly constructed as bulk structures from silk fibroin (SF) molecules. A variety of fabrication strategies to control nanostructures of silks or to create functional materials from silk nanoscale building blocks have been developed in the recent years. These emerging fabrication strategies offer an opportunity to tailor the structure of SF at the nanoscale and provide a promising route to produce structurally and functionally optimized silk nanomaterials. Herein, the critical roles of silk nanoarchitectures in property and function of natural silk fibers are reviewed and the strategies of utilization of these silk nanobuilding blocks are outlined. Further, the state‐of‐the‐art techniques to create silk nanoarchitectures and to generate silk‐based nanocomponents are summarized. An effective approach to constructing sophisticated silk functional nanocomposites with promising applications in regenerative medicine, drug delivery, and optical and electronic device designs is provided. Further, such insights suggest templates to consider for other material systems.

     
    more » « less
  5. Three-dimensional (3D) nanostructures play a crucial role in nanophotonics, lasers, and optical systems. This article reports on the fabrication of 3D nanostructures consisting of opal structures that are spatially aligned to an array of holes defined in the photoresist. The proposed method uses colloidal lithography to pattern a hexagonal array of holes, which are then used to direct the subsequent 3D assembly of colloidal particles. This approach allows the 3D opal structures to be aligned with the 2D array of holes, which can enhance spatial-phase coherence and reduce defects. The polymer patterns can be used as a sacrificial template for atomic layer deposition and create free-standing nanolattices. The final structure consists of a combination of nanolattice, upon which controlled deposition of opal structures is achieved. These structures result in nanostructured materials with high porosity, which is essential to create low-index materials for nanophotonics. A thick layer of titanium oxide with high refractive index is deposited over nanolattices to demonstrate the mechanical stability of underlying structures. These nanolattice structures with precisely controlled height can serve as a low-index layer and can find applications in Bragg reflectors, nanophotonics, and optical multilayers.

     
    more » « less