skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1813920

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The central theme in robotic manipulation is that of the robot interacting with the world through physical contact. We tend to describe that physical contact using specific words that capture the nature of the contact and the action, such as grasp, roll, pivot, push, pull, tilt, close, open etc. We refer to these situation-specific actions as manipulation primitives. Due to the nonlinear and nonsmooth nature of physical interaction, roboticists have devoted significant efforts towards studying individual manipulation primitives. However, studying individual primitives one by one is an inherently limited process, due engineering costs, overfitting to specific tasks, and lack of robustness to unforeseen variations. These limitations motivate the main contribution of this paper: a complete and general framework to autogenerate manipulation primitives. To do so, we develop the theory and computation of contact modes as a means to classify and enumerate manipulation primitives. The contact modes form a graph, specifically a lattice. Our algorithm to autogenerate manipulation primitives (AMP) performs graph-based optimization on the contact mode lattice and solves a linear program to generate each primitive. We designed several experiments to validate our approach. We benchmarked a wide range of contact scenarios and our pipeline’s runtime was consistently in the 10 s of milliseconds. In simulation, we planned manipulation sequences using AMP. In the real-world, we showcased the robustness of our approach to real-world modeling errors. We hope that our contributions will lead to more general and robust approaches for robotic manipulation. 
    more » « less
  2. This paper explores a novel approach to dexterous manipulation, aimed at levels of speed, precision, robustness, and simplicity suitable for practical deployment. The enabling technology is a Direct-drive Hand (DDHand) comprising two fingers, two DOFs each, that exhibit high speed and a light touch. The test application is the dexterous manipulation of three small and irregular parts, moving them to a grasp suitable for a subsequent assembly operation, regardless of initial presentation. We employed four primitive behaviors that use ground contact as a “third finger”, prior to or during the grasp process: pushing, pivoting, toppling, and squeeze- grasping. In our experiments, each part was presented from 30 to 90 times randomly positioned in each stable pose. Success rates varied from 83% to 100%. The time to manipulate and grasp was 6.32 seconds on average, varying from 2.07 to 16 seconds. In some cases, performance was robust, precise, and fast enough for practical applications, but in other cases, pose uncertainty required time-consuming vision and arm motions. The paper concludes with a discussion of further improvements required to make the primitives robust, eliminate uncertainty, and reduce this dependence on vision and arm motion. 
    more » « less
  3. We present simplified 2D dynamic models of the 3D, passive dynamic inspired walking gait of a physical quasi-passive walking robot. Quasi-passive walkers are robots that integrate passive walking principles and some form of actuation. Our ultimate goal is to better understand the dynamics of actuated walking in order to create miniature, untethered, bipedal walking robots. At these smaller scales there is limited space and power available, and so in this work we leverage the passive dynamics of walking to reduce the burden on the actuators and controllers. Prior quasi-passive walkers are much larger than our intended scale, have more complicated mechanical designs, and require more precise feedback control and/or learning algorithms. By leveraging the passive 3D dynamics, carefully designing the spherical feet, and changing the actuation scheme, we are able to produce a very simple 3D bipedal walking model that has a total of 5 rigid bodies and a single actuator per leg. Additionally, the model requires no feedback as each actuator is controlled by an open-loop sinusoidal profile. We validate this model in 2D simulations in which we measure the stability properties while varying the leg length/amplitude ratio, the frequency of actuation, and the spherical foot profile. These results are also validated experimentally on a 3D walking robot (15cm leg length) that implements the modeled walking dynamics. Finally, we experimentally investigate the ability to control the heading of the robot by changing the open-loop control parameters of the robot. 
    more » « less
  4. null (Ed.)
    Localizing contacts and collisions is an important aspect of failure detection and recovery for robots and can aid perception and exploration of the environment. Contrary to state-of-the-art methods that rely on forces and torques measured on the robot, this paper proposes a kinematic method for proprioceptive contact localization on compliant robots using velocity measurements. The method is validated on two planar robots, the quadrupedal Minitaur and the two-fingered Direct Drive (DD) Hand which are compliant due to inherent transparency from direct drive actuation. Comparisons to other state-of-the-art proprioceptive methods are shown in simulation. Preliminary results on further extensions to complex geometry (through numerical methods) and spatial robots (with a particle filter) are discussed. 
    more » « less
  5. Robots operating in unstructured environments must localize contact to detect and recover from failure. For example, Fig. 1 shows a Minitaur robot that must localize where it has unexpectedly contacted the stair’s edge so that it can properly step over it. We propose a kinematic method for proprioceptive contact localization using velocity measurements. The method is validated on two planar robots, the quadrupedal Minitaur and the DD Hand gripper, and compared to other state of the art proprioceptive methods. We further show that the method can be extended to spatial robots by fusing the candidate contact points over time with a particle filter. 
    more » « less
  6. In this paper, we investigate the planar dynamic pivoting problem, in which a pinched object is reoriented to a desired pose through wrist swing motion and grip force regulation. Traditional approaches based on friction compensation do not work well for this problem, as we observe the torsional friction at the contact has large uncertainties during pivoting. In addition, the discontinuities of friction and the lower bound constraint on the grip force all make dynamic pivoting a challenging task for robots. To address these problems, we propose a robust control strategy that directly uses friction as a key input for dynamic pivoting, and show that active friction control by regulating the grip force significantly improves system stability. In particular, we embed a Lyapunov-based control law into a quadratic programming framework, which also ensures real-time computational speed and the existence of a solution. The proposed algorithm has been validated on our dynamic pivoting robot that emulates human wrist-finger configuration and motion. The object orientation can quickly converge to the target even under considerable uncertainties from friction and object grasping position, where traditional methods fail. 
    more » « less
  7. The Direct Drive Hand (DDHand) project is exploring an alternative design philosophy for grippers. The conventional approach is to prioritize clamping force, leading to high gear ratios, slow motion, and poor transmission of force/motion signals. Instead, the DDHand prioritizes transparency: we view the gripper as a signal transmission channel, and seek high-bandwidth, highfidelity transmission of force and motion signals in both directions. The resulting design has no gears and no springs, occupying a new quadrant in the servo gripper design space. This paper presents the direct drive gripper design philosophy, compares the performance of different design choices, describes our current design and implementation, and demonstrates a fly-by “smack and snatch” grasping motion to show the gripper’s ability to safely detect and respond quickly to variations in the task environment. 
    more » « less