Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract In this study, we perform a 2‐frequency sequential receiver function stacking investigation in Southern California. The resulting Moho depths exhibit similar patterns to previous studies while the crystalline crustal Vp/Vs values show more regional variations. Most Vp/Vs variations can be explained by compositional differences. We observe a dichotomy in Moho depth, Vp/Vs, and crustal strain rates between the Peninsular Ranges and Southern San Andreas Fault system. Comparisons between strain rates, Vp/Vs, and temperature suggest that crustal compositional variations may have played a more critical role in influencing the crustal strain rate variations in the Peninsular Ranges and Southern San Andreas than temperature. The structural and compositional variations provide a new insight into the causes of the migration of the Southern San Andreas Fault system and the formation of the “Big Bend.”more » « less
-
Abstract Slab rollback, lithospheric body forces, or evolution of plate boundary conditions are strongly debated as possible lithospheric driving mechanisms for Cenozoic extension in southwestern North America. By incorporating paleo-topography, lithospheric structure, and paleo-boundary conditions, we develop a complete geodynamic model that quantifies lithospheric deviatoric stresses and predicts extension and shear history since Late Eocene. We show that lithospheric body forces together with influence of change-over from subduction to transtensional boundary conditions from Late Eocene to Early Miocene were the primary driving factors controlling direction and magnitude of extensional deviatoric stresses that produced topographic collapse. After paleo-highlands collapsed, influence of Pacific-North America plate motion and associated deformation style along the plate boundary became increasingly important from Middle Miocene to present. Smaller-scale convection stress effects from slab rollback and associated mantle flow played only a minor role. However, slab rollback guided deformation rate through introduction of melts and fluids that impacted rheology.more » « less
-
Landscape properties have a profound influence on the diversity and distribution of biota, with present-day biodiversity hot spots occurring in topographically complex regions globally. Complex topography is created by tectonic processes and further shaped by interactions between climate and land-surface processes. These processes enrich diversity at the regional scale by promoting speciation and accommodating increased species richness along strong environmental gradients. Synthesis of the mammalian fossil record and a geophysical model of topographic evolution of the Basin and Range Province in western North America enable us to directly quantify relationships between mammal diversity and landscape dynamics over the past 30 million years. We analyze the covariation between tectonic history (extensional strain rates, paleotopography, and ruggedness), global temperature, and diversity dynamics. Mammal species richness and turnover exhibit stronger responses to rates of change in landscape properties than to the specific properties themselves, with peaks in diversity coinciding with high tectonic strain rates and large changes in elevation across spatial scales.more » « less
-
The Cenozoic landscape evolution in southwestern North America is ascribed to crustal isostasy, dynamic topography, or lithosphere tectonics, but their relative contributions remain controversial. Here we reconstruct landscape history since the late Eocene by investigating the interplay between mantle convection, lithosphere dynamics, climate, and surface processes using fully coupled four-dimensional numerical models. Our quantified depth dependent strain rate and stress history within the lithosphere, under the influence of gravitational collapse and sub-lithospheric mantle flow, show that high gravitational potential energy of a mountain chain relative to a lower Colorado Plateau can explain extension directions and stress magnitudes in the belt of metamorphic core complexes during topographic collapse. Profound lithospheric weakening through heating and partial melting, following slab rollback, promoted this extensional collapse. Landscape evolution guided northeast drainage onto the Colorado Plateau during the late Eocene-late Oligocene, south-southwest drainage reversal during the late Oligocene-middle Miocene, and southwest drainage following the late Miocene.more » « less
-
Within extreme continental extension areas, ductile middle crust is exhumed at the surface as metamorphic core complexes. Sophisticated quantitative models of extreme extension predicted upward transport of ductile middlelower crust through time. Here we develop a general model for metamorphic core complexes formation and demonstrate that they result from the collapse of a mountain belt supported by a thickened crustal root. We show that gravitational body forces generated by topography and crustal root cause an upward flow pattern of the ductile lower-middle crust, facilitated by a detachment surface evolving into low-angle normal fault. This detachment surface acquires large amounts of finite strain, consistent with thick mylonite zones found in metamorphic core complexes. Isostatic rebound exposes the detachment in a domed upwarp, while the final Moho discontinuity across the extended region relaxes to a flat geometry. This work suggests that belts of metamorphic core complexes are a fossil signature of collapsed highlands.more » « less
-
Tectonic activity can drive speciation and sedimentation, potentially causing the fossil and rock records to share common patterns through time. The Basin and Range of western North America arose through widespread extension and collapse of topographic highlands in the Miocene, creating numerous basins with rich mammalian fossil records. We analyzed patterns of mammalian species richness from 36 to 0 million years ago in relation to the history of sediment accumulation to test whether intervals of high species richness corresponded with elevated sediment accumulation and fossil burial in response to tectonic deformation. We found that the sedimentary record of the Basin and Range tracks the tectonic evolution of landscapes, whereas species-richness trends reflect actual increased richness in the Miocene rather than increased fossil burial. The sedimentary record of the region broadly determines the preservation of the fossil record but does not drive the Miocene peak in mammalian species richness.more » « less
-
Abstract Numerous studies have documented rare-earth element (REE) mobility in hydrothermal and metamorphic fluids, but the processes and timing of REE mobility are rarely well constrained. The Round Top laccolith in the Trans-Pecos magmatic province of west Texas, a REE ore prospect, has crosscutting fractures filled with fluorite and calcite along with a variety of unusual minerals. Most notably among these is an yttrium and heavy rare-earth element (YHREE) carbonate mineral, which is hypothesized to be lokkaite based on elemental analyses. While the Round Top laccolith is dated to 36.2 ± 0.6 Ma based on K/Ar in biotite, U-Pb fluorite and nacrite ages presented here clearly show the mineralization in these veins is younger than 6.2 ± 0.4 Ma (the age of the oldest fluorite). This discrepancy in dates suggests that fluids interacted with the laccolith to mobilize REE more than 30 m.y. after igneous emplacement. The timing of observed REE mobilization overlaps with Rio Grande rift extension, and we suggest that F-bearing fluids associated with extension may be responsible for initial mobilization. A later generation of fluids was able to dissolve fluorite, and we hypothesize this later history involved sulfuric acid. Synchrotron spectroscopy and laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) U-Pb dating of minerals that record these fluids offer tremendous potential for a more fundamental understanding of processes that are important not only for REE but other ore deposits as well.more » « less
-
Abstract New uranium-lead (U-Pb) analyses of carbonate deposits in the Navajo Sandstone in southeastern Utah (USA) yielded dates of 200.5 ± 1.5 Ma (earliest Jurassic, Hettangian Age) and 195.0 ± 7.7 Ma (Early Jurassic, Sinemurian Age). These radioisotopic ages—the first reported from the Navajo erg and the oldest ages reported for this formation—are critical for understanding Colorado Plateau stratigraphy because they demonstrate that initial Navajo Sandstone deposition began just after the Triassic and that the base of the unit is strongly time-transgressive by at least 5.5 m.y.more » « less
An official website of the United States government

Full Text Available