skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Potential for constraining sequence stratigraphy and cycle stratigraphy with U-Pb dating of carbonates
Award ID(s):
1814051
PAR ID:
10571630
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Earth-Science Reviews 243 (2023) 104495
Date Published:
Journal Name:
Earth-Science Reviews
Volume:
243
Issue:
C
ISSN:
0012-8252
Page Range / eLocation ID:
104495
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We present an updated set of Carboniferous Sr, C and O isotope stratigraphies based on the existing literature, given the importance of chemostratigraphy for stratigraphic correlation in the Carboniferous. The Carboniferous87Sr/86Sr record, constructed using brachiopods and conodonts, exhibits five first-order phases beginning with a rapid decline from a peak value ofc.0.70840 at the Devonian–Carboniferous boundary to a trough (0.70776–0.70771) in the Visean followed by a rise to a plateau (c.0.70827) in the upper Bashkirian. A decline toc.0.70804 follows from the lowermost Gzhelian to the close of the Carboniferous. Contemporaneous carbonate δ13C records exhibit considerable variability between materials analysed and by region, although pronounced excursions (e.g. the mid-Tournaisian positive excursion and the end-Kasimovian negative excursion) are present in most records. Bulk carbonate δ13C records from South China and Europe, however, are generally consistent with those of brachiopod calcite from North America in terms of both absolute values and trends. Both brachiopod calcite and conodont phosphate δ18O document large regional variability, confirming that Carboniferous δ18O records are invalid for precise stratigraphic correlation. Nevertheless, significant positive δ18O shifts in certain intervals (e.g. mid-Tournaisian and the Mississippian–Pennsylvanian transition) can be used for global correlation. 
    more » « less
  2. Abstract The StraboSpot data system provides field-based geologists the ability to digitally collect, archive, query, and share data. Recent efforts have expanded this data system with the vocabulary, standards, and workflow utilized by the sedimentary geology community. A standardized vocabulary that honors typical workflows for collecting sedimentologic and stratigraphic field and laboratory data was developed through a series of focused workshops and vetted/refined through subsequent workshops and field trips. This new vocabulary was designed to fit within the underlying structure of StraboSpot and resulted in the expansion of the existing data structure. Although the map-based approach of StraboSpot did not fully conform to the workflow for sedimentary geologists, new functions were developed for the sedimentary community to facilitate descriptions, interpretations, and the plotting of measured sections to document stratigraphic position and relationships between data types. Consequently, a new modality was added to StraboSpot—Strat Mode—which now accommodates sedimentary workflows that enable users to document stratigraphic positions and relationships and automates construction of measured stratigraphic sections. Strat Mode facilitates data collection and co-location of multiple data types (e.g., descriptive observations, images, samples, and measurements) in geographic and stratigraphic coordinates across multiple scales, thus preserving spatial and stratigraphic relationships in the data structure. Incorporating these digital technologies will lead to better research communication in sedimentology through a common vocabulary, shared standards, and open data archiving and sharing. 
    more » « less
  3. he StraboSpot data system provides field-based geologists the ability to digitally collect, archive, query, and share data. Recent efforts have expanded this data system with the vocabulary, standards, and workflow utilized by the sedimentary geology community. A standardized vocabulary that hon-ors typical workflows for collecting sedimentologic and stratigraphic field and laboratory data was developed through a series of focused workshops and vetted/refined through subsequent workshops and field trips. This new vocabulary was designed to fit within the underlying structure of StraboSpot and resulted in the expansion of the existing data structure. Although the map-based approach of StraboSpot did not fully conform to the workflow for sedimentary geologists, new functions were developed for the sedimen-tary community to facilitate descriptions, interpretations, and the plotting of measured sections to document stratigraphic position and relationships between data types. Consequently, a new modality was added to StraboSpot—Strat Mode—which now accommodates sedimentary workflows that enable users to document stratigraphic positions and relationships and automates construction of measured stratigraphic sections. Strat Mode facilitates data collection and co-location of multiple data types (e.g., descriptive observa-tions, images, samples, and measurements) in geographic and stratigraphic coordinates across multiple scales, thus preserving spatial and stratigraphic relationships in the data structure. Incorporating these digital technologies will lead to better research communication in sedimentology through a common vocabulary, shared standards, and open data archiving and sharing. 
    more » « less