Abstract This work offers a new prospective on asymptotic perturbation theory for varying self‐adjoint extensions of symmetric operators. Employing symplectic formulation of self‐adjointness, we use a version of resolvent difference identity for two arbitrary self‐adjoint extensions that facilitates asymptotic analysis of resolvent operators via first‐order expansion for the family of Lagrangian planes associated with perturbed operators. Specifically, we derive a Riccati‐type differential equation and the first‐order asymptotic expansion for resolvents of self‐adjoint extensions determined by smooth one‐parameter families of Lagrangian planes. This asymptotic perturbation theory yields a symplectic version of the abstract Kato selection theorem and Hadamard–Rellich‐type variational formula for slopes of multiple eigenvalue curves bifurcating from an eigenvalue of the unperturbed operator. The latter, in turn, gives a general infinitesimal version of the celebrated formula equating the spectral flow of a path of self‐adjoint extensions and the Maslov index of the corresponding path of Lagrangian planes. Applications are given to quantum graphs, periodic Kronig–Penney model, elliptic second‐order partial differential operators with Robin boundary conditions, and physically relevant heat equations with thermal conductivity.
more »
« less
Morse inequalities for ordered eigenvalues of generic self-adjoint families
In many applied problems one seeks to identify and count the critical points of a particular eigenvalue of a smooth parametric family of self-adjoint matrices, with the parameter space often being known and simple, such as a torus. Among particular settings where such a question arises are the Floquet–Bloch decomposition of periodic Schrödinger operators, topology of potential energy surfaces in quantum chemistry, spectral optimization problems such as minimal spectral partitions of manifolds, as well as nodal statistics of graph eigenfunctions. In contrast to the classical Morse theory dealing with smooth functions, the eigenvalues of families of self-adjoint matrices are not smooth at the points corresponding to repeated eigenvalues (called, depending on the application and on the dimension of the parameter space, the diabolical/Dirac/Weyl points or the conical intersections). This work develops a procedure for associating a Morse polynomial to a point of eigenvalue multiplicity; it utilizes the assumptions of smoothness and self-adjointness of the family to provide concrete answers. In particular, we define the notions of non-degenerate topologically critical point and generalized Morse family, establish that generalized Morse families are generic in an appropriate sense, establish a differential first-order conditions for criticality, as well as compute the local contribution of a topologically critical point to the Morse polynomial. Remarkably, the non-smooth contribution to the Morse polynomial turns out to depend only on the size of the eigenvalue multiplicity and the relative position of the eigenvalue of interest and not on the particulars of the operator family; it is expressed in terms of the homologies of Grassmannians.
more »
« less
- PAR ID:
- 10581415
- Publisher / Repository:
- Springer Science+Business Media
- Date Published:
- Journal Name:
- Inventiones mathematicae
- Volume:
- 238
- Issue:
- 1
- ISSN:
- 0020-9910
- Page Range / eLocation ID:
- 283 to 330
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Summary Modern statistical methods for multivariate time series rely on the eigendecomposition of matrix-valued functions such as time-varying covariance and spectral density matrices. The curse of indeterminacy or misidentification of smooth eigenvector functions has not received much attention. We resolve this important problem and recover smooth trajectories by examining the distance between the eigenvectors of the same matrix-valued function evaluated at two consecutive points. We change the sign of the next eigenvector if its distance with the current one is larger than the square root of 2. In the case of distinct eigenvalues, this simple method delivers smooth eigenvectors. For coalescing eigenvalues, we match the corresponding eigenvectors and apply an additional signing around the coalescing points. We establish consistency and rates of convergence for the proposed smooth eigenvector estimators. Simulation results and applications to real data confirm that our approach is needed to obtain smooth eigenvectors.more » « less
-
We develop a non-symmetric strong multiplicity property for matrices that may or may not be symmetric. We say a sign pattern allows the non-symmetric strong multiplicity property if there is a matrix with the non-symmetric strong multiplicity property that has the given sign pattern. We show that this property of a matrix pattern preserves multiplicities of eigenvalues for superpatterns of the pattern. We also provide a bifurcation lemma, showing that a matrix pattern with the property also allows refinements of the multiplicity list of eigenvalues. We conclude by demonstrating how this property can help with the inverse eigenvalue problem of determining the number of distinct eigenvalues allowed by a sign pattern.more » « less
-
Abstract Consider the normalized adjacency matrices of randomd‐regular graphs onNvertices with fixed degree . We prove that, with probability for any , the following two properties hold as provided that : (i) The eigenvalues are close to the classical eigenvalue locations given by the Kesten–McKay distribution. In particular, the extremal eigenvalues are concentrated with polynomial error bound inN, that is, . (ii) All eigenvectors of randomd‐regular graphs are completely delocalized.more » « less
-
Abstract We consider the existence and spectral stability of static multi-kink structures in the discrete sine-Gordon equation, as a representative example of the family of discrete Klein–Gordon models. The multi-kinks are constructed using Lin’s method from an alternating sequence of well-separated kink and antikink solutions. We then locate the point spectrum associated with these multi-kink solutions by reducing the spectral problem to a matrix equation. For an m -structure multi-kink, there will be m eigenvalues in the point spectrum near each eigenvalue of the primary kink, and, as long as the spectrum of the primary kink is imaginary, the spectrum of the multi-kink will be as well. We obtain analytic expressions for the eigenvalues of a multi-kink in terms of the eigenvalues and corresponding eigenfunctions of the primary kink, and these are in very good agreement with numerical results. We also perform numerical time-stepping experiments on perturbations of multi-kinks, and the outcomes of these simulations are interpreted using the spectral results.more » « less
An official website of the United States government

