skip to main content


Search for: All records

Award ID contains: 1815971

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that has been adapted to metric spaces. A standard approach is to consider the Fréchet mean. In practice, computing the Fréchet mean for sets of large graphs presents many computational issues. In this work, we suggest a method that may be used to compute the Fréchet mean for sets of graphs which is metric independent. We show that the technique proposed can be used to determine the Fréchet mean when considering the Hamming distance or a distance defined by the difference between the spectra of the adjacency matrices of the graphs. 
    more » « less
  2. Banerjee, Arindam ; Zhou, Zhi-Hua (Ed.)
    To characterize the location (mean, median) of a set of graphs, one needs a notion of centrality that is adapted to metric spaces, since graph sets are not Euclidean spaces. A standard approach is to consider the Fr ́echet mean. In this work, we equip a set of graph with the pseudometric defined by the l2 norm between the eigenvalues of their respective adjacency matrix. Unlike the edit distance, this pseudometric reveals structural changes at multiple scales, and is well adapted to studying various statistical problems for graph-valued data. We describe an algorithm to compute an approximation to the sample Fr ́echet mean of a set of undirected unweighted graphs with a fixed size using this pseudometric. 
    more » « less
  3. Ribeiro, Pedro ; Silva, Fernando ; Mendes, José Fernando ; Laureano, Rosário (Ed.)
    The availability of large datasets composed of graphs creates an unprecedented need to invent novel tools in statistical learning for graph-valued random variables. To characterize the average of a sample of graphs, one can compute the sample Frechet mean and median graphs. In this paper, we address the following foundational question: does a mean or median graph inherit the structural properties of the graphs in the sample? An important graph property is the edge density; we establish that edge density is an hereditary property, which can be transmitted from a graph sample to its sample Frechet mean or median graphs, irrespective of the method used to estimate the mean or the median. Because of the prominence of the Frechet mean in graph-valued machine learning, this novel theoretical result has some significant practical consequences. 
    more » « less
  4. Benito, Rosa Maria ; Cherifi, Chantal ; Cherifi, Hocine ; Moro, Esteban ; Rocha, Luis M. (Ed.)
    To characterize the “average” of a set of graphs, one can compute the sample Fr ́echet mean. We prove the following result: if we use the Hamming distance to compute distances between graphs, then the Fr ́echet mean of an ensemble of inhomogeneous random graphs is obtained by thresholding the expected adjacency matrix: an edge exists between the vertices i and j in the Fr ́echet mean graph if and only if the corresponding entry of the expected adjacency matrix is greater than 1/2. We prove that the result also holds for the sample Fr ́echet mean when the expected adjacency matrix is replaced with the sample mean adjacency matrix. This novel theoretical result has some significant practical consequences; for instance, the Fr ́echet mean of an ensemble of sparse inhomogeneous random graphs is the empty graph. 
    more » « less
  5. Abstract. We study a change point detection scenario for a dynamic community graph model, which is formed by adding new vertices and randomly attaching them to the existing nodes. The goal of this work is to design a test statistic to detect the merging of communities with- out solving the problem of identifying the communities. We propose a test that can ascertain when the connectivity between the balanced communities is changing. In addition to the theoretical analysis of the test statistic, we perform Monte Carlo simulations of the dynamic stochastic blockmodel to demonstrate that our test can detect changes in graph topology, and we study a dynamic social-contact graph. 
    more » « less
  6. A central goal in neuroscience is to understand how dynamic networks of neural activity produce effective representations of the world. Advances in the theory of graph measures raise the possibility of elucidating network topologies central to the construction of these representations. We leverage a result from the description of lollipop graphs to identify an iconic network topology in functional magnetic resonance imaging data and characterize changes to those networks during task performance and in populations diagnosed with psychiatric disorders. During task performance, we find that task-relevant subnetworks change topology, becoming more integrated by increasing connectivity throughout cortex. Analysis of resting-state connectivity in clinical populations shows a similar pattern of subnetwork topology changes; resting-scans becoming less default-like with more integrated sensory paths. The study of brain network topologies and their relationship to cognitive models of information processing raises new opportunities for understanding brain function and its disorders. 
    more » « less
  7. Abstract Covariance matrices are fundamental to the analysis and forecast of economic, physical and biological systems. Although the eigenvalues $\{\lambda _i\}$ and eigenvectors $\{\boldsymbol{u}_i\}$ of a covariance matrix are central to such endeavours, in practice one must inevitably approximate the covariance matrix based on data with finite sample size $n$ to obtain empirical eigenvalues $\{\tilde{\lambda }_i\}$ and eigenvectors $\{\tilde{\boldsymbol{u}}_i\}$, and therefore understanding the error so introduced is of central importance. We analyse eigenvector error $\|\boldsymbol{u}_i - \tilde{\boldsymbol{u}}_i \|^2$ while leveraging the assumption that the true covariance matrix having size $p$ is drawn from a matrix ensemble with known spectral properties—particularly, we assume the distribution of population eigenvalues weakly converges as $p\to \infty $ to a spectral density $\rho (\lambda )$ and that the spacing between population eigenvalues is similar to that for the Gaussian orthogonal ensemble. Our approach complements previous analyses of eigenvector error that require the full set of eigenvalues to be known, which can be computationally infeasible when $p$ is large. To provide a scalable approach for uncertainty quantification of eigenvector error, we consider a fixed eigenvalue $\lambda $ and approximate the distribution of the expected square error $r= \mathbb{E}\left [\| \boldsymbol{u}_i - \tilde{\boldsymbol{u}}_i \|^2\right ]$ across the matrix ensemble for all $\boldsymbol{u}_i$ associated with $\lambda _i=\lambda $. We find, for example, that for sufficiently large matrix size $p$ and sample size $n> p$, the probability density of $r$ scales as $1/nr^2$. This power-law scaling implies that the eigenvector error is extremely heterogeneous—even if $r$ is very small for most eigenvectors, it can be large for others with non-negligible probability. We support this and further results with numerical experiments. 
    more » « less