Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)A bstract We use the notion of double holography to study Hawking radiation emitted by the eternal BTZ black hole in equilibrium with a thermal bath, but in the form of warped CFT 2 degrees of freedom. In agreement with the literature, we find entanglement islands and a phase transition in the entanglement surface, but our results differ significantly from work in AdS/CFT in three major ways: (1) the late-time entropy decreases in time, (2) island degrees of freedom exist at all times, not just at late times, with the phase transition changing whether or not these degrees of freedom include the black hole interior, and (3) the physics involves a field-theoretic IR divergence emerging when the boundary interval is too big relative to the black hole’s inverse temperature. This behavior in the entropy appears to be consistent with the non-unitarity of holographic warped CFT 2 and demonstrates that the islands are not a phenomenon restricted to black hole information in unitary setups.more » « less
-
null (Ed.)A bstract We derive the holographic entanglement entropy functional for a generic gravitational theory whose action contains terms up to cubic order in the Riemann tensor, and in any dimension. This is the simplest case for which the so-called splitting problem manifests itself, and we explicitly show that the two common splittings present in the literature — minimal and non-minimal — produce different functionals. We apply our results to the particular examples of a boundary disk and a boundary strip in a state dual to 4- dimensional Poincaré AdS in Einsteinian Cubic Gravity, obtaining the bulk entanglement surface for both functionals and finding that causal wedge inclusion is respected for both splittings and a wide range of values of the cubic coupling.more » « less
-
A bstract In the context of holography, entanglement entropy can be studied either by i) extremal surfaces or ii) bit threads, i.e., divergenceless vector fields with a norm bound set by the Planck length. In this paper we develop a new method for metric reconstruction based on the latter approach and show the advantages over existing ones. We start by studying general linear perturbations around the vacuum state. Generic thread configurations turn out to encode the information about the metric in a highly nonlocal way, however, we show that for boundary regions with a local modular Hamiltonian there is always a canonical choice for the perturbed thread configurations that exploits bulk locality. To do so, we express the bit thread formalism in terms of differential forms so that it becomes manifestly background independent. We show that the Iyer-Wald formalism provides a natural candidate for a canonical local perturbation, which can be used to recast the problem of metric reconstruction in terms of the inversion of a particular linear differential operator. We examine in detail the inversion problem for the case of spherical regions and give explicit expressions for the inverse operator in this case. Going beyond linear order, we argue that the operator that must be inverted naturally increases in order. However, the inversion can be done recursively at different orders in the perturbation. Finally, we comment on an alternative way of reconstructing the metric non-perturbatively by phrasing the inversion problem as a particular optimization problem.more » « less
An official website of the United States government
