Abstract In linearized gravity with distributed matter, the background metric has no generic symmetries, and decomposition of the metric perturbation into global normal modes is generally impractical. This complicates the identification of the gauge-invariant part of the perturbation, which is a concern, for example, in the theory of dispersive gravitational waves (GWs) whose energy–momentum must be gauge-invariant. Here, we propose how to identify the gauge-invariant part of the metric perturbation and the six independent gauge invariants per se for an arbitrary background metric. For the Minkowski background, the operator that projects the metric perturbation on the invariant subspace is proportional to the well-known dispersion operator of linear GWs in vacuum. For a general background, this operator is expressed in terms of the Green’s operator of the vacuum wave equation. If the background is smooth, it can be found asymptotically using the inverse scale of the background metric as a small parameter.
more »
« less
Bit threads, Einstein’s equations and bulk locality
A bstract In the context of holography, entanglement entropy can be studied either by i) extremal surfaces or ii) bit threads, i.e., divergenceless vector fields with a norm bound set by the Planck length. In this paper we develop a new method for metric reconstruction based on the latter approach and show the advantages over existing ones. We start by studying general linear perturbations around the vacuum state. Generic thread configurations turn out to encode the information about the metric in a highly nonlocal way, however, we show that for boundary regions with a local modular Hamiltonian there is always a canonical choice for the perturbed thread configurations that exploits bulk locality. To do so, we express the bit thread formalism in terms of differential forms so that it becomes manifestly background independent. We show that the Iyer-Wald formalism provides a natural candidate for a canonical local perturbation, which can be used to recast the problem of metric reconstruction in terms of the inversion of a particular linear differential operator. We examine in detail the inversion problem for the case of spherical regions and give explicit expressions for the inverse operator in this case. Going beyond linear order, we argue that the operator that must be inverted naturally increases in order. However, the inversion can be done recursively at different orders in the perturbation. Finally, we comment on an alternative way of reconstructing the metric non-perturbatively by phrasing the inversion problem as a particular optimization problem.
more »
« less
- Award ID(s):
- 1820712
- PAR ID:
- 10176133
- Date Published:
- Journal Name:
- Journal of High Energy Physics
- Volume:
- 2021
- Issue:
- 1
- ISSN:
- 1029-8479
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The gravitational perturbations of a rotating Kerr black hole are notoriously complicated, even at the linear level. In 1973, Teukolsky showed that their physical degrees of freedom are encoded in two gauge-invariant Weyl curvature scalars that obey a separable wave equation. Determining these scalars is sufficient for many purposes, such as the computation of energy fluxes. However, some applications—such as second-order perturbation theory—require the reconstruction of metric perturbations. In principle, this problem was solved long ago, but in practice, the solution has never been worked out explicitly. Here, we do so by writing down the metric perturbation (in either ingoing or outgoing radiation gauge) that corresponds to a given mode of either Weyl scalar. Our formulas make no reference to the Hertz potential (an intermediate quantity that plays no fundamental role) and involve only the radial and angular Kerr modes, but not their derivatives, which can be altogether eliminated using the Teukolsky–Starobinsky identities. We expect these analytic results to prove useful in numerical studies and for extending black hole perturbation theory beyond the linear regime.more » « less
-
Abstract A central problem in any quantum theory of gravity is to explain the emergence of the classical spacetime geometry in some limit of a more fundamental, microscopic description of nature. The gauge/gravity-correspondence provides a framework in which this problem can, in principle, be addressed. This is a holographic correspondence which relates a supergravity theory in five-dimensional Anti-deSitter space to a strongly coupled superconformal gauge theory on its 4-dimensional flat Minkowski boundary. In particular, the classical geometry should therefore emerge from some quantum state of the dual gauge theory. Here we confirm this by showing how the classical metric emerges from a canonical state in the dual gauge theory. In particular, we obtain approximations to the Sasaki-Einstein metric underlying the supergravity geometry, in terms of an explicit integral formula involving the canonical quantum state in question. In the special case of toric quiver gauge theories we show that our results can be computationally simplified through a process of tropicalization.more » « less
-
We derive new terms in the post-Newtonian (PN) expansion of the generalized redshift invariant hu tiτ for a small body in eccentric, equatorial orbit about a massive Kerr black hole. The series is computed analytically using the Teukolsky formalism for first-order black hole perturbation theory, along with the Chrzanowski, Cohen, Kegeles method for metric reconstruction using the Hertz potential in ingoing radiation gauge. Modal contributions with small values of l are derived via the semianalytic solution of Mano-Suzuki-Takasugi, while the remaining values of l to infinity are determined via direct expansion of the Teukolsky equation. Each PN order is calculated as a series in eccentricity e but kept exact in the primary black hole’s spin parameter a. In total, the PN terms are expanded to e16 through 6PN relative order, and separately to e10 through 8PN relative order. Upon grouping eccentricity coefficients by spin dependence, we find that many resulting component terms can be simplified to closed-form functions of eccentricity, in close analogy to corresponding terms derived previously in the Schwarzschild limit. We use numerical calculations to compare convergence of the full series to its Schwarzschild counterpart and discuss implications for gravitational wave analysis.more » « less
-
The free expansion of a Gaussian wavepacket is a problem commonly discussed in undergraduate quantum classes by directly solving the time-dependent Schrödinger equation as a differential equation. In this work, we provide an alternative way to calculate the free expansion by recognizing that the Gaussian wavepacket can be thought of as the ground state of a harmonic oscillator with its frequency adjusted to give the initial width of the Gaussian, and the time evolution, given by the free-particle Hamiltonian, being the same as the application of a time-dependent squeezing operator to the harmonic oscillator ground state. Operator manipulations alone (including the Hadamard lemma and the exponential disentangling identity) then allow us to directly solve the problem. As quantum instruction evolves to include more quantum information science applications, reworking this well-known problem using a squeezing formalism will help students develop intuition for how squeezed states are used in quantum sensing.more » « less
An official website of the United States government

