skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1821601

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Capturing evidence for dynamic changes in self‐regulated learning (SRL) behaviours resulting from interventions is challenging for researchers. In the current study, we identified students who were likely to do poorly in a biology course and those who were likely to do well. Then, we randomly assigned a portion of the students predicted to perform poorly to a science of learning to learn intervention where they were taught SRL study strategies. Learning outcome and log data (257 K events) were collected fromn = 226 students. We used a complex systems framework to model the differences in SRL including the amount, interrelatedness, density and regularity of engagement captured in digital trace data (ie, logs). Differences were compared between students who were predicted to (1) perform poorly (control,n = 48), (2) perform poorly and received intervention (treatment,n = 95) and (3) perform well (not flagged,n = 83). Results indicated that the regularity of students' engagement was predictive of course grade, and that the intervention group exhibited increased regularity in engagement over the control group immediately after the intervention and maintained that increase over the course of the semester. We discuss the implications of these findings in relation to the future of artificial intelligence and potential uses for monitoring student learning in online environments. Practitioner notesWhat is already known about this topicSelf‐regulated learning (SRL) knowledge and skills are strong predictors of postsecondary STEM student success.SRL is a dynamic, temporal process that leads to purposeful student engagement.Methods and metrics for measuring dynamic SRL behaviours in learning contexts are needed.What this paper addsA Markov process for measuring dynamic SRL processes using log data.Evidence that dynamic, interaction‐dominant aspects of SRL predict student achievement.Evidence that SRL processes can be meaningfully impacted through educational intervention.Implications for theory and practiceComplexity approaches inform theory and measurement of dynamic SRL processes.Static representations of dynamic SRL processes are promising learning analytics metrics.Engineered features of LMS usage are valuable contributions to AI models. 
    more » « less
  2. Abstract Undergraduate STEM lecture courses enroll hundreds who must master declarative, conceptual, and applied learning objectives. To support them, instructors have turned to active learning designs that require students to engage inself-regulated learning(SRL). Undergraduates struggle with SRL, and universities provide courses, workshops, and digital training to scaffold SRL skill development and enactment. We examined two theory-aligned designs of digital skill trainings that scaffold SRL and how students’ demonstration of metacognitive knowledge of learning skills predicted exam performance in biology courses where training took place. In Study 1, students’ (n = 49) responses to training activities were scored for quality and summed by training topic and level of understanding. Behavioral and environmental regulation knowledge predicted midterm and final exam grades; knowledge of SRL processes did not. Declarative and conceptual levels of skill-mastery predicted exam performance; application-level knowledge did not. When modeled by topic at each level of understanding, declarative knowledge of behavioral and environmental regulation and conceptual knowledge of cognitive strategies predicted final exam performance. In Study 2 (n = 62), knowledge demonstrated during a redesigned video-based multimedia version of behavioral and environmental regulation again predicted biology exam performance. Across studies, performance on training activities designed in alignment with skill-training models predicted course performances and predictions were sustained in a redesign prioritizing learning efficiency. Training learners’ SRL skills –and specifically cognitive strategies and environmental regulation– benefited their later biology course performances across studies, which demonstrate the value of providing brief, digital activities to develop learning skills. Ongoing refinement to materials designed to develop metacognitive processing and learners’ ability to apply skills in new contexts can increase benefits. 
    more » « less
  3. null (Ed.)
    The COVID-19 disruption presented considerable challenges for university students, requiring the sudden need for increased engagement in remote learning environments and the ability to cope with academic and familial demands. To examine how students self-regulated their learning during the disruption, we surveyed undergraduates (n = 226) enrolled in four sections of a large biology course once during the first week of the semester, immediately after the disruption, and through the end of the semester. The results indicated significant decreases in student motivation, increases in students' perceived costs, and quadratic changes in self-reported coping strategies and mental depletion during disrupted learning. In a final model, students' self-efficacy and perceptions of cost, as well as feelings of anger and personal responsibility for family combined to form a parsimonious set of predictors that explained variance in course performance. 
    more » « less