skip to main content


Search for: All records

Award ID contains: 1825444

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Design heuristics are traditionally used as qualitative principles to guide the design process, but they have also been used to improve the efficiency of design optimization. Using design heuristics as soft constraints or search operators has been shown for some problems to reduce the number of function evaluations needed to achieve a certain level of convergence. However, in other cases, enforcing heuristics can reduce diversity and slow down convergence. This paper studies the question of when and how a given set of design heuristics represented in different forms (soft constraints, repair operators, and biased sampling) can be utilized in an automated way to improve efficiency for a given design problem. An approach is presented for identifying promising heuristics for a given problem by estimating the overall impact of a heuristic based on an exploratory screening study. Two impact indices are formulated: weighted influence index and hypervolume difference index. Using this approach, the promising heuristics for four design problems are identified and the efficacy of selectively enforcing only these promising heuristics over both enforcement of all available heuristics and not enforcing any heuristics is benchmarked. In all problems, it is found that enforcing only the promising heuristics as repair operators enables finding good designs faster than by enforcing all available heuristics or not enforcing any heuristics. Enforcing heuristics as soft constraints or biased sampling functions results in improvements in efficiency for some of the problems. Based on these results, guidelines for designers to leverage heuristics effectively in design optimization are presented.

     
    more » « less
    Free, publicly-accessible full text available December 1, 2024
  2. Triply periodic minimal surface lattices have mechanical properties that derive from the unit cell geometry and the base material. Through computation software like nTopology and Abaqus, these geometries are used to tune nonlinear stress–strain curves not readily achievable with solid materials alone and to change the compliance by two orders of magnitude compared to the constituent material. In this study, four elastomeric TPMS gyroids undergo large deformation compression and tension testing to investigate the impact of the structure's geometry on the mechanical properties. Among all the samples, the modulus at strainεvaries by over one order of magnitude (7.7–293.4 kPa from FEA under compression). These lattices are promising candidates for designing multifunctional systems that can perform multiple tasks simultaneously by leveraging the geometry's large surface area to volume ratio. For example, the architectural functionality of the lattice to bear loads and store mechanical energy along with the larger surface area for energy storage is combined. A compliant double‐gyroid capacitor that can simultaneously achieve three functions is demonstrated: load bearing, energy storage, and sensing.

     
    more » « less
  3. null (Ed.)
    Artificial muscles based on stimuli-responsive polymers usually exhibit mechanical compliance, versatility, and high power-to-weight ratio, showing great promise to potentially replace conventional rigid motors for next-generation soft robots, wearable electronics, and biomedical devices. In particular, thermomechanical liquid crystal elastomers (LCEs) constitute artificial muscle-like actuators that can be remotely triggered for large stroke, fast response, and highly repeatable actuations. Here, we introduce a digital light processing (DLP)–based additive manufacturing approach that automatically shear aligns mesogenic oligomers, layer-by-layer, to achieve high orientational order in the photocrosslinked structures; this ordering yields high specific work capacity (63 J kg −1 ) and energy density (0.18 MJ m −3 ). We demonstrate actuators composed of these DLP printed LCEs’ applications in soft robotics, such as reversible grasping, untethered crawling, and weightlifting. Furthermore, we present an LCE self-sensing system that exploits thermally induced optical transition as an intrinsic option toward feedback control. 
    more » « less
  4. null (Ed.)
    Design optimization of metamaterials and other complex systems often relies on the use of computationally expensive models. This makes it challenging to use global multi-objective optimization approaches that require many function evaluations. Engineers often have heuristics or rules of thumb with potential to drastically reduce the number of function evaluations needed to achieve good convergence. Recent research has demonstrated that these design heuristics can be used explicitly in design optimization, indeed leading to accelerated convergence. However, these approaches have only been demonstrated on specific problems, the performance of different methods was diverse, and despite all heuristics being ``correct'', some heuristics were found to perform much better than others for various problems. In this paper, we describe a case study in design heuristics for a simple class of 2D constrained multiobjective optimization problems involving lattice-based metamaterial design. Design heuristics are strategically incorporated into the design search and the heuristics-enabled optimization framework is compared with the standard optimization framework not using the heuristics. Results indicate that leveraging design heuristics for design optimization can help in reaching the optimal designs faster. We also identify some guidelines to help designers choose design heuristics and methods to incorporate them for a given problem at hand. 
    more » « less