skip to main content


Search for: All records

Award ID contains: 1828611

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Immersive Virtual Environments (IVEs) incorporating tangibles are becoming more accessible. The success of applications combining 3D printed tangibles and VR often depends on how accurately size is perceived. Research has shown that visuo-haptic perceptual information is important in the perception of size. However, it is unclear how these sensory-perceptual channels are affected by immersive virtual environments that incorporate tangible objects. Towards understanding the effects of different sensory information channels in the near field size perception of tangibles of graspable sizes in IVEs, we conducted a between-subjects study evaluating the accuracy of size perception across three experimental conditions (Vision-only, Haptics-only, Vision and Haptics). We found that overall, participants consistently over-estimated the size of the dials regardless of the type of perceptual information that was presented. Participants in the haptics only condition overestimated diameters to a larger degree as compared to other conditions. Participants were most accurate in the vision only condition and least accurate in the haptics only condition. Our results also revealed that increased efficiency in reporting size over time was most pronounced in the visuo- haptic condition. 
    more » « less
  2. null (Ed.)
    We discuss and present design probes investigating how pervasive displays could offer unique opportunities for enhancing discovery and learning with “big data.” Our collaboration across three universities undertook a series of design exercises investigating approaches for collaborative, interactive, tangibles, and multitouch-engaged visualizations of genomic and related scientific datasets. These exercises led to several envisionments of tangible interfaces that employ active tokens and interactive surfaces to facilitate co-located and distributed engagement with large datasets. We describe some of the motivation and background for these envisioned interfaces; consider key aspects linking and distinguishing the designs; and relate these to the present and near-future state of the art for tangible and multitouch engagement with pervasive displays toward collaborative science. 
    more » « less
  3. Research on tangible user interfaces commonly focuses on tangible interfaces acting alone or in comparison with multi-touch or graphical interfaces. In contrast, hybrid approaches can be seen as the norm for established "mainstream'' interaction paradigms. In my work, I propose interfaces that support complementary interaction modalities, representational forms and scales, toward hybrid systems which are more legible and actionable than any strategy considered separately. I describe systems involving dial-like tangibles, which are passive and active, and systems combining interaction modalities such as tangible and multi-touch, and tangible and VR interaction. I briefly describe some of the planned and performed evaluations, and draw lessons from an already completed study involving a computationally-mediated scientific poster platform with content developed by undergraduate students. 
    more » « less
  4. null (Ed.)
    We explore how pervasive displays could offer unique opportunities for enhancing discovery and learning with “big data”. In 2012-2014, our collaboration across three universities undertook a series of design exercises investigating approaches for collaborative, interactive, tangibles, and multitouch-engaged visualizations of genomic and related scientific datasets. These exercises led to several envisionments of tangible interfaces that employ active to- kens and interactive surfaces to facilitate colocated and distributed engagement with large datasets. We describe some of the motivation and background for these envisioned interfaces; consider key aspects linking and distinguishing the designs; and relate these to the present and near-future state of the art for tangible and multitouch engagement with pervasive displays toward collaborative science. 
    more » « less