skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Envisioning tangibles and display-rich interfaces for co-located and distributed genomics collaborations
We explore how pervasive displays could offer unique opportunities for enhancing discovery and learning with “big data”. In 2012-2014, our collaboration across three universities undertook a series of design exercises investigating approaches for collaborative, interactive, tangibles, and multitouch-engaged visualizations of genomic and related scientific datasets. These exercises led to several envisionments of tangible interfaces that employ active to- kens and interactive surfaces to facilitate colocated and distributed engagement with large datasets. We describe some of the motivation and background for these envisioned interfaces; consider key aspects linking and distinguishing the designs; and relate these to the present and near-future state of the art for tangible and multitouch engagement with pervasive displays toward collaborative science.  more » « less
Award ID(s):
1828611
PAR ID:
10199965
Author(s) / Creator(s):
; ; ;
Date Published:
Journal Name:
Pervasive Displays
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    We discuss and present design probes investigating how pervasive displays could offer unique opportunities for enhancing discovery and learning with “big data.” Our collaboration across three universities undertook a series of design exercises investigating approaches for collaborative, interactive, tangibles, and multitouch-engaged visualizations of genomic and related scientific datasets. These exercises led to several envisionments of tangible interfaces that employ active tokens and interactive surfaces to facilitate co-located and distributed engagement with large datasets. We describe some of the motivation and background for these envisioned interfaces; consider key aspects linking and distinguishing the designs; and relate these to the present and near-future state of the art for tangible and multitouch engagement with pervasive displays toward collaborative science. 
    more » « less
  2. null (Ed.)
    Over the last decade, large multitouch displays have become commonplace in museums and other public spaces. While there is preliminary evidence that exhibits based on tangible technologies can be more attractive and engaging for visitors than displays alone, very little empirical research has directly compared tangible to large multitouch displays in museums. In this paper, we present a study comparing the use of a tangible and a multitouch tabletop interface in an exhibit designed to explore musical rhythms. From an observation pool of 791 museum visitors, a total of 227 people in 82 groups interacted with one of the two versions of our exhibit. We share the exhibit design, experimental setup, and methods and measures. Our findings highlight advantages of tangible interaction in terms of attracting and engaging children and families. However, the two exhibits were equally effective at supporting collaborative interaction within visitor groups. We conclude with a discussion of the implications for museum exhibit design vis-à-vis visitor engagement and learning. 
    more » « less
  3. The electronics-centered approach to physical computing presents challenges when designers build tangible interactive systems due to its inherent emphasis on circuitry and electronic components. To explore an alternative physical computing approach we have developed a computer vision (CV) based system that uses a webcam, computer, and printed fiducial markers to create functional tangible interfaces. Through a series of design studios, we probed how designers build tangible interfaces with this CV-driven approach. In this paper, we apply the annotated portfolio method to reflect on the fifteen outcomes from these studios. We observed that CV markers offer versatile materiality for tangible interactions, afford the use of democratic materials for interface construction, and engage designers in embodied debugging with their own vision as a proxy for CV. By sharing our insights, we inform other designers and educators who seek alternative ways to facilitate physical computing and tangible interaction design. 
    more » « less
  4. null (Ed.)
    Science simulations are widely used in classrooms to support inquiry-based learning of complex science concepts. These tools typically rely on interactive visual displays to convey relationships. Auditory displays, including verbal description and sonification (non-speech audio), combined with alternative input capabilities, may provide an enhanced experience for learners, particularly learners with visual impairment. We completed semi-structured interviews and usability testing with eight adult learners with visual impairment for two audio-enhanced simulations. We analyzed trends and edge cases in participants' interaction patterns, interpretations, and preferences. Findings include common interaction patterns across simulation use, increased efficiency with second use, and the complementary role that description and sonification play in supporting learning opportunities. We discuss how these control and display layers work to encourage exploration and engagement with science simulations. We conclude with general and specific design takeaways to support the implementation of auditory displays for accessible simulations. 
    more » « less
  5. Not AActive, hands-on learning is essential for engineering education, fostering deep engagement and enhancing knowledge retention. This multi-institutional study investigates how different instructional methods—Hands-On, Virtual, and Lecture-only—combined with four distinct Low-Cost Desktop Learning Modules (LCDLMs: Hydraulic Loss, Double Pipe, Shell & Tube, and Venturi Meter) affect student engagement and learning outcomes. Anchored in the ICAP framework (Interactive, Constructive, Active, Passive), the study measured cognitive engagement through direct observations, virtual screen recordings, and self-reported surveys. It assessed learning gains using normalized pre- and post-tests among 2,316 undergraduate engineering students from eight universities. Results indicate that virtual instruction yields significantly higher learning gains, while the Shell & Tube module enhances active engagement through tangible, hands-on experiences. In contrast, the Hydraulic Loss module demonstrates the greatest impact on quantitative knowledge growth. These findings underscore the potential of integrating virtual simulations with physical learning tools to optimize instructional design in engineering education. Implications for future research include refining measurement instruments and exploring the long-term effects of hybrid instructional models. 
    more » « less