skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Subgraph Matching on Multiplex Networks
An active area of research in computational science is the design of algorithms for solving the subgraph matching problem to find copies of a given template graph in a larger world graph. Prior works have largely addressed single-channel networks using a variety of approaches. We present a suite of filtering methods for subgraph isomorphisms for multiplex networks (with different types of edges between nodes and more than one edge within each channel type). We aim to understand the entire solution space rather than focusing on finding one isomorphism. Results are shown on several classes of datasets: (a) Sudoku puzzles mapped to the subgraph isomorphism problem, (b) ErdsRnyi multigraphs, (c) real-world datasets from Twitter and transportation networks, (d) synthetic data created for the DARPA MAA program.  more » « less
Award ID(s):
1829071 2027277
PAR ID:
10224932
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
IEEE Transactions on Network Science and Engineering
ISSN:
2334-329X
Page Range / eLocation ID:
1 to 1
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract The big graph database provides strong modeling capabilities and efficient querying for complex applications. Subgraph isomorphism which finds exact matches of a query graph in the database efficiently, is a challenging problem. Current subgraph isomorphism approaches mostly are based on the pruning strategy proposed by Ullmann. These techniques have two significant drawbacks- first, they are unable to efficiently handle complex queries, and second, their implementations need the large indexes that require large memory resources. In this paper, we describe a new subgraph isomorphism approach, the HyGraph algorithm, that is efficient both in querying and with memory requirements for index creation. We compare the HyGraph algorithm with two popular existing approaches, GraphQL and Cypher using complexity measures and experimentally using three big graph data sets—(1) a country-level population database, (2) a simulated bank database, and (3) a publicly available World Cup big graph database. It is shown that the HyGraph solution performs significantly better (or equally) than competing algorithms for the query operations on these big databases, making it an excellent candidate for subgraph isomorphism queries in real scenarios. 
    more » « less
  2. Subgraph neural networks have recently gained prominence for subgraph-level predictive tasks, but existing methods either use simple pooling over graph convolutional networks that fail to capture essential subgraph properties or rely on rigid subgraph definitions that limit performance; moreover, they cannot model long-range dependencies between and within subgraphs—an important limitation given real-world networks’ diverse structures. To address this, we propose the first implicit subgraph neural network that captures dependencies across subgraphs and integrates label-aware subgraph-level information, formulating implicit subgraph learning as a bilevel optimization problem and introducing a provably convergent algorithm requiring fewer gradient estimations than standard bilevel methods, achieving superior performance on real-world benchmarks. 
    more » « less
  3. Graph neural networks have been successful for machine learning, as well as for combinatorial and graph problems such as the Subgraph Isomorphism Problem and the Traveling Salesman Problem. We describe an approach for computing graph sparsifiers by combining a graph neural network and Monte Carlo Tree Search. We first train a graph neural network that takes as input a partial solution and proposes a new node to be added as output. This neural network is then used in a Monte Carlo search to compute a sparsifier. The proposed method consistently outperforms several standard approximation algorithms on different types of graphs and often finds the optimal solution. 
    more » « less
  4. Networks are known as perfect tools for modeling various types of systems. In the literature of network mining, frequent subgraph mining is considered as the essence of mining network data. In this problem, the dataset is composed of networks representing multiple independent systems or one system at multiple time stamps. The cores of mining frequent subgraphs are graph and subgraph isomorphism. Due to the complexities of these problems, the frequent subgraph mining algorithms proposed in the literature employ various heuristics for candidate generation, duplicate subgraphs pruning, and support computation. In this survey, we provide a classification of proposed algorithms in the literature. The algorithms for static networks have found numerous applications. Therefore, these algorithms will be reviewed in detail. Besides, it is discussed that consideration of temporality of data can impact the derived insight and attracted substantial attention in recent years. However, prior surveys have not comprehensively examined the algorithms of frequent subgraph mining in a database of temporal networks represented as network snapshots. Therefore, the algorithms proposed for mining frequent subgraphs in temporal networks are reviewed. Moreover, most of the surveys have focused on main-memory algorithms. Here, we review disk-based, parallel, and distributed algorithms proposed for mining frequent subgraphs. 
    more » « less
  5. In this paper, we propose a novel method, GSM, to compute graph matching (subgraph isomorphism) on GPUs. Unlike previous formulations of graph matching, our approach is BFS-based and thus can be mapped onto GPUs in a massively parallel fashion. Our implementation uses the Gunrock program- ming model and we evaluate our implementation in runtime and memory consumption compared with previous state-of-the- art work. We sustain a peak traversed-edges-per-second (TEPS) rate of nearly 10 GTEPS. Our algorithm is the most scalable and parallel among all existing GPU implementations and also outperforms all existing CPU distributed implementations. This work specifically focuses on leveraging our implementation on the triangle counting problem for the Subgraph Isomorphism Graph Challenge, demonstrating a geometric mean speedup over the 2018 champion of 3.84x 
    more » « less