skip to main content


Title: Highly luminescent ultra-thin films with rare earth for plasmonic applications

Amphiphilic complexes with luminescent rare earth metal ions suitable for Lanmuir-Blodgett (LB) deposition have been synthesized. LB monolayers with closely packed Eu complexes deposited directly on silver demonstrate significant far-field emission in contrast to the theoretical predictions of full quenching. Angular radiation and polarization patterns of the electric and magnetic dipole emission of Eu3+point to a high excitation efficiency of surface plasmon polaritons. Different luminescent behavior of closely packed emitters in comparison to diluted systems is tentatively attributed to the collective state of emitters in LB layers formed via near-field coupling with surface plasmons.

 
more » « less
Award ID(s):
1830886 2112595
NSF-PAR ID:
10468814
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Optical Society of America
Date Published:
Journal Name:
Optics Continuum
Volume:
2
Issue:
10
ISSN:
2770-0208
Format(s):
Medium: X Size: Article No. 2200
Size(s):
["Article No. 2200"]
Sponsoring Org:
National Science Foundation
More Like this
  1. Four groups of rare-earth complexes, comprising 11 new compounds, with fluorinated O-donor ligands ([K(THF)6][Ln(OC4F9)4(THF)2] (1-Ln; Ln = Ce, Nd), [K](THF)x[Ln(OC4F9)4(THF)y] (2-Ln; Ln = Eu, Gd, Dy), [K(THF)2][Ln(pinF)2(THF)3] (3-Ln; Ln = Ce, Nd), and [K(THF)2][Ln(pinF)2(THF)2] (4-Ln; Ln = Eu, Gd, Dy, Y) have been synthesized and characterized. Single-crystal X-ray diffraction data were collected for all compounds except 2-Ln. Species 1-Ln, 3-Ln, and 4-Ln are uncommon examples of six-coordinate (Eu, Gd, Dy, and Y) and seven-coordinate (Ce and Nd) LnIII centers in all-O-donor environments. Species 1-Ln, 2-Ln, 3-Ln, and 4-Ln are all luminescent (except where Ln = Gd and Y), with the solid-state emission of 1-Ce being exceptionally blue-shifted for a Ce complex. The emission spectra of the six Nd, Eu, and Dy complexes do not show large differences based on the ligand and are generally consistent with the well-known free-ion spectra. Time-dependent density functional theory results show that 1-Ce and 3-Ce undergo allowed 5f → 4d excitations, consistent with luminescence lifetime measurements in the nanosecond range. Eu-containing 2-Eu and 4-Eu, however, were found to have luminescence lifetimes in the millisecond range, indicating phosphorescence rather than fluorescence. The performance of a pair of multireference models for prediction of the Ln = Nd, Eu, and Dy absorption spectra was assessed. It was found that spectroscopy-oriented configuration interaction as applied to a simplified model in which the free-ion lanthanide was embedded in ligand-centered Löwdin point charges performed as well (Nd) or better (Eu and Dy) than canonical NEVPT2 calculations, when the ligand orbitals were included in the treatment. 
    more » « less
  2. We explore a possibility to control magnetic dipole emission with plasmonic cavities, placing Eu3+emitters inside profile-modulated metal-dielectric-metal structures. Significant variations in the branching ratio of the magnetic and electric dipole transitions are observed as the function of the thickness of the intermediate layer. The experimental results are confirmed with numerical simulations which account for cavity and gap plasmon resonances and predict modifications in the spontaneous emission spectrum as the function of the gap size and a strong directionality of the emission for small thicknesses of the intermediate layer. The implications of having a competition between electric and magnetic dipole relaxation channels in Eu3+are discussed.

     
    more » « less
  3. Abstract

    Fluoride phase separation is the initial stage of nanocrystallization in oxyfluoride glasses, and it is a key step in achieving transparent glass‐ceramics with good luminescence. In this work, we combine molecular dynamics (MD) simulations and experimental studies to investigate the phase separation, nanocrystallization and photoluminescence in fluoroaluminosilicate glass and glass‐ceramics containing alkali earth fluoride (MF2). The results reveal different phase separation behaviors due to the field strength difference of M2+. The composition and size similarity between the fluoride‐rich regions in the MD simulated glass and the fluoride nanocrystals in the experimental prepared glass‐ceramics are observed, suggesting that the separated fluoride phase is the structural origin of the observed MF2nanocrystals. Besides, in order to understand the M2+dependent glass structural features, the crystallization temperatures, the luminescent properties of Eu3+and Eu2+doped glass‐ceramics, and the lasing performance of Er3+doped glass‐ceramics are discussed. Based on these comprehensions, some strategies are proposed to help to efficiently design oxyfluoride glass with desired luminescence performance.

     
    more » « less
  4. Abstract

    Ultrabright fluorescent nanoparticles (NPs) hold great promise for demanding bioimaging applications. Recently, extremely bright molecular crystals of cationic fluorophores were obtained by hierarchical coassembly with cyanostar anion‐receptor complexes. These small‐molecule ionic isolation lattices (SMILES) ensure spatial and electronic isolation to prohibit aggregation quenching of dyes. We report a simple, one‐step supramolecular approach to formulate SMILES materials into NPs. Rhodamine‐based SMILES NPs stabilized by glycol amphiphiles show high fluorescence quantum yield (30 %) and brightness per volume (5000 M−1 cm−1/nm3) with 400 dye molecules packed into 16‐nm particles, corresponding to a particle absorption coefficient of 4×107 M−1 cm−1. UV excitation of the cyanostar component leads to higher brightness (>6000 M−1 cm−1/ nm3) by energy transfer to rhodamine emitters. Coated NPs stain cells and are thus promising for bioimaging.

     
    more » « less
  5. Abstract

    Ultrabright fluorescent nanoparticles (NPs) hold great promise for demanding bioimaging applications. Recently, extremely bright molecular crystals of cationic fluorophores were obtained by hierarchical coassembly with cyanostar anion‐receptor complexes. These small‐molecule ionic isolation lattices (SMILES) ensure spatial and electronic isolation to prohibit aggregation quenching of dyes. We report a simple, one‐step supramolecular approach to formulate SMILES materials into NPs. Rhodamine‐based SMILES NPs stabilized by glycol amphiphiles show high fluorescence quantum yield (30 %) and brightness per volume (5000 M−1 cm−1/nm3) with 400 dye molecules packed into 16‐nm particles, corresponding to a particle absorption coefficient of 4×107 M−1 cm−1. UV excitation of the cyanostar component leads to higher brightness (>6000 M−1 cm−1/ nm3) by energy transfer to rhodamine emitters. Coated NPs stain cells and are thus promising for bioimaging.

     
    more » « less