skip to main content


Search for: All records

Award ID contains: 1832260

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Research on colloids is motivated by several factors. They can be used to answer fundamental questions related to the assembly of materials, and they have many potential applications in electronics, photonics, and life sciences. However, the rich variety of colloidal structures observed on the Earth can be influenced by the effects of gravity, which leads to particles settling and the motion of the surrounding fluid. To suppress the gravity effects, experiments on concentrated colloids of spherical and ellipsoidal fluorescent particles were carried out aboard the International Space Station. The particles were suspended in a decalin/tetralin mixture to match the particle refractive index. Confocal microscopy was used to visualize the particle behavior. The work was supported by the NSF CBET grants 1832260 and 1832291 and the NASA grant 80NSSC19K1655. 
    more » « less
  2. null (Ed.)
    Research on colloids is motivated by several factors. They can be used to answer fundamental questions related to the assembly of materials, and they have many potential applications in electronics, photonics, and life sciences. However, the rich variety of colloidal structures observed on the Earth can be influenced by the effects of gravity, which leads to particles settling and the motion of the surrounding fluid. To suppress the gravity effects, experiments on concentrated colloids of spherical and ellipsoidal fluorescent particles were carried out aboard the International Space Station. The particles were suspended in a decalin/tetralin mixture to match the particle refractive index. Confocal microscopy was used to visualize the particle behavior. The work was supported by the NSF CBET grants 1832260 and 1832291 and the NASA grant 80NSSC19K1655. 
    more » « less
  3. A variety of colloidal structures observed in terrestrial experiments could also have been influenced by gravity effects (particle sedimentation, convection, etc.) It is often assumed that weightlessness simulated in a time-averaged sense by slowly rotating a specimen in a clinostat about an axis perpendicular to the gravity direction that is widely used in biological tests would reduce the effect of gravity on suspensions. Experiments on a non-buoyancy-matched suspension in flights in NASA Zero-gravity aircraft revealed that particle patterns formed in a clinostat and under normal gravity are actually similar. A requirement for matching densities between particles and a solvent severely limits possibilities to study the field-induced structuring in colloids in terrestrial experiments. Long-term microgravity in ISS offers unique opportunity to employ not density matched suspensions to explore a wide range of the mismatch of electric characteristics between particles and a solvent. We will report experimental data on the field driven structure formation in suspensions and present our approach to the development of ISS experiments. The aim is to understand mechanisms of structure formation and suggest novel routes for creating functional materials. *NASA NNX13AQ53G, NSF1832260. 
    more » « less
  4. Model hard colloids have a great deal of relevance to physics and in particular the study of their phase behavior which can mimic that of simple atomic liquids and solids. "Nearly hard colloidal sphere" suspensions were formulated 35 years ago by the Ottewill group (Univ. of Bristol) and Imperial Chemical Industries Ltd., which were used by Pusey and van Megen in their seminal study of the phase behavior of hard-sphere colloids. We report on our efforts to reproduce and refine this benchmark polymer colloid, including the recent synthesis of hard ellipsoids for random and ordered packing studies in microgravity*. The custom-made samples are composed of linear polymer chains of poly(methyl methacrylate), functionalized with photo-crosslinkable moieties and fluorescent molecules. The resulting ellipsoidal shapes are about 1 micron in size and stabilized with surface-grafted poly(12-hydroxystearic acid) chains. The particles are dispersed in a refractive index matching fluid and particle aspect ratios vary from 1 to 4. * Launched March 2020 aboard SpaceX CRS-20 resupply service mission to the International Space Station. *NASA NNX13AR67G (NYU); NSF GOALI 1832291 (NYU); NSF GOALI 1832260 (NJIT) 
    more » « less