skip to main content

Title: A Simple Model for Mixing and Cooling in Cloud–Wind Interactions

We introduce a simple entropy-based formalism to characterize the role of mixing in pressure-balanced multiphase clouds and demonstrate example applications usingenzo-e(magneto)hydrodynamic simulations. Under this formalism, the high-dimensional description of the system’s state at a given time is simplified to the joint distribution of mass over pressure (P) and entropy (K=Pργ). As a result, this approach provides a way to (empirically and analytically) quantify the impact of different initial conditions and sets of physics on the system evolution. We find that mixing predominantly alters the distribution along theKdirection and illustrate how the formalism can be used to model mixing and cooling for fluid elements originating in the cloud. We further confirm and generalize a previously suggested criterion for cloud growth in the presence of radiative cooling and demonstrate that the shape of the cooling curve, particularly at the low-temperature end, can play an important role in controlling condensation. Moreover, we discuss the capacity of our approach to generalize such a criterion to apply to additional sets of physics and to build intuition for the impact of subtle higher-order effects not directly addressed by the criterion.

; ;
Award ID(s):
Publication Date:
Journal Name:
The Astrophysical Journal
Page Range or eLocation-ID:
Article No. 199
DOI PREFIX: 10.3847
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    We present a multiwavelength analysis of the galaxy cluster SPT-CL J0607-4448 (SPT0607), which is one of the most distant clusters discovered by the South Pole Telescope atz= 1.4010 ± 0.0028. The high-redshift cluster shows clear signs of being relaxed with well-regulated feedback from the active galactic nucleus (AGN) in the brightest cluster galaxy (BCG). Using Chandra X-ray data, we construct thermodynamic profiles and determine the properties of the intracluster medium. The cool-core nature of the cluster is supported by a centrally peaked density profile and low central entropy (K0=189+11keV cm2), which we estimate assuming an isothermal temperature profile due to the limited spectral information given the distance to the cluster. Using the density profile and gas cooling time inferred from the X-ray data, we find a mass-cooling rateṀcool=10060+90Myr−1. From optical spectroscopy and photometry around the [Oii] emission line, we estimate that the BCG star formation rate isSFR[OII]=1.70.6+1.0Myr−1, roughly two orders of magnitude lower than the predicted mass-cooling rate. In addition, using ATCA radio data at 2.1 GHz, we measure a radio jet powerPcav=3.21.3+2.1×1044erg s−1, which is consistent withmore »the X-ray cooling luminosity (Lcool=1.90.5+0.2×1044erg s−1withinrcool= 43 kpc). These findings suggest that SPT0607 is a relaxed, cool-core cluster with AGN-regulated cooling at an epoch shortly after cluster formation, implying that the balance between cooling and feedback can be reached quickly. We discuss the implications for these findings on the evolution of AGN feedback in galaxy clusters.

    « less
  2. Abstract

    We present the largest and most homogeneous collection of near-infrared (NIR) spectra of Type Ia supernovae (SNe Ia): 339 spectra of 98 individual SNe obtained as part of the Carnegie Supernova Project-II. These spectra, obtained with the FIRE spectrograph on the 6.5 m Magellan Baade telescope, have a spectral range of 0.8–2.5μm. Using this sample, we explore the NIR spectral diversity of SNe Ia and construct a template of spectral time series as a function of the light-curve-shape parameter, color stretchsBV. Principal component analysis is applied to characterize the diversity of the spectral features and reduce data dimensionality to a smaller subspace. Gaussian process regression is then used to model the subspace dependence on phase and light-curve shape and the associated uncertainty. Our template is able to predict spectral variations that are correlated withsBV, such as the hallmark NIR features: Mgiiat early times and theH-band break after peak. Using this template reduces the systematic uncertainties inK-corrections by ∼90% compared to those from the Hsiao template. These uncertainties, defined as the meanK-correction differences computed with the color-matched template and observed spectra, are on the level of 4 × 10−4mag on average. This template can serve as the baseline spectral energymore »distribution for light-curve fitters and can identify peculiar spectral features that might point to compelling physics. The results presented here will substantially improve future SN Ia cosmological experiments, for both nearby and distant samples.

    « less
  3. Abstract

    We combine data sets from the CGM2and CASBaH surveys to model a transition point,Rcross, between circumgalactic and intergalactic media (CGM and IGM, respectively). In total, our data consist of 7244 galaxies atz< 0.5 with precisely measured spectroscopic redshifts, all having impact parameters of 0.01–20 comoving Mpc from 28 QSO sightlines with high-resolution UV spectra that cover HiLyα. Our best-fitting model is a two-component model that combines a 3D absorber–galaxy cross-correlation function with a simple Gaussian profile at inner radii to represent the CGM. By design, this model gives rise to a determination ofRcrossas a function of galaxy stellar mass, which can be interpreted as the boundary between the CGM and IGM. For galaxies with 108M/M≤ 1010.5, we find thatRcross(M) ≈ 2.0 ± 0.6Rvir. Additionally, we find excellent agreement betweenRcross(M) and the theoretically determined splashback radius for galaxies in this mass range. Overall, our results favor models of galaxy evolution atz< 0.5 that distributeT≈ 104K gas to distances beyond the virial radius.

  4. Abstract

    We present results on the properties of extreme gas outflows in massive (M*∼ 1011M), compact, starburst (star formation rate, SFR∼ 200Myr−1) galaxies atz= 0.4–0.7 with very high star formation surface densities (ΣSFR∼ 2000Myr−1kpc−2). Using optical Keck/HIRES spectroscopy of 14 HizEA starburst galaxies, we identify outflows with maximum velocities of 820–2860 km s−1. High-resolution spectroscopy allows us to measure precise column densities and covering fractions as a function of outflow velocity and characterize the kinematics and structure of the cool gas outflow phase (T∼ 104K). We find substantial variation in the absorption profiles, which likely reflects the complex morphology of inhomogeneously distributed, clumpy gas and the intricacy of the turbulent mixing layers between the cold and hot outflow phases. There is not a straightforward correlation between the bursts in the galaxies’ star formation histories and their wind absorption line profiles, as might naively be expected for starburst-driven winds. The lack of strong Mgiiabsorption at the systemic velocity is likely an orientation effect, where the observations are down the axis of a blowout. We infer high mass outflow rates of ∼50–2200Myr−1, assuming a fiducial outflow size of 5 kpc, and mass loading factors ofη∼ 5 for most of the sample. Whilemore »these values have high uncertainties, they suggest that starburst galaxies are capable of ejecting very large amounts of cool gas that will substantially impact their future evolution.

    « less
  5. Abstract

    Absorption-line measurements of the circumgalactic medium (CGM) display a highly nonuniform distribution of lower ionization state species accompanied by more widespread higher ionization state material. This suggests that the CGM is a dynamic, multiphase medium, such as arises in the presence of turbulence. To better understand this evolution, we perform hydrodynamic and magnetohydrodynamic (MHD) simulations of the CGM surrounding Milky Way–like galaxies. In both cases, the CGM is initially in hydrostatic balance in a 1012Mdark matter gravitational potential, and the simulations include rotation in the inner halo and turbulence that decreases radially. They also track ionizations, recombinations, and species-by-species radiative cooling in the presence of the redshift-zero UV background, employing the MAIHEM nonequilibrium chemistry package. We find that after 9 Gyr of evolution, the presence of a magnetic field leads to an overall hotter CGM, with cool gas in the center where magnetic pressure dominates. While the non-MHD run produces more cold clouds overall, we find similar Siiv/Oviand Nv/Oviratios between the MHD and non-MHD runs, which are both very different from their equilibrium values. The non-MHD halo develops cool, low angular momentum filaments above the central disk, in comparison to the MHD run that has more efficient angular momentummore »transport, especially for the cold gas, which forms a more ordered and extended disk late into its evolution.

    « less