skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1837779

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We consider a large-scale multi-robot path planning problem in a cluttered environment. Our approach achieves real-time replanning by dividing the workspace into cells and utilizing a hierarchical planner. Specifically, we propose novel multi-commodity flow-based high-level planners that route robots through cells with reduced congestion, along with an anytime low-level planner that computes collision-free paths for robots within each cell in parallel. A highlight of our method is a significant improvement in computation time. Specifically, we show empirical results of a 500-times speedup in computation time compared to the baseline multi-agent pathfinding approach on the environments we study. We account for the robot's embodiment and support non-stop execution with continuous replanning. We demonstrate the real-time performance of our algorithm with up to 142 robots in simulation, and a representative 32 physical Crazyflie nano-quadrotor experiment. 
    more » « less
  2. We present an empirical study of the relationship between map connectivity and the empirical hardness of the multi-agent pathfinding (MAPF) problem. By analyzing the second smallest eigenvalue (commonly known as lambda2) of the normalized Laplacian matrix of different maps, our initial study indicates that maps with smaller lambda2 tend to create more challenging instances when agents are generated uniformly randomly. Additionally, we introduce a map generator based on Quality Diversity (QD) that is capable of producing maps with specified lambda2 ranges, offering a possible way for generating challenging MAPF instances. Despite the absence of a strict monotonic correlation with lambda2 and the empirical hardness of MAPF, this study serves as a valuable initial investigation for gaining a deeper understanding of what makes a MAPF instance hard to solve. 
    more » « less