skip to main content


Search for: All records

Award ID contains: 1838071

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Differential operators are widely used in geometry processing for problem domains like spectral shape analysis, data interpolation, parametrization and mapping, and meshing. In addition to the ubiquitous cotangent Laplacian, anisotropic second‐order operators, as well as higher‐order operators such as the Bilaplacian, have been discretized for specialized applications. In this paper, we study a class of operators that generalizes the fourth‐order Bilaplacian to support anisotropic behavior. The anisotropy is parametrized by asymmetric frame field, first studied in connection with quadrilateral and hexahedral meshing, which allows for fine‐grained control of local directions of variation. We discretize these operators using a mixed finite element scheme, verify convergence of the discretization, study the behavior of the operator under pullback, and present potential applications.

     
    more » « less
  2. Abstract

    Recently proposed as a stable means of evaluating geometric compactness, theisoperimetric profileof a planar domain measures the minimum perimeter needed to inscribe a shape with prescribed area varying from 0 to the area of the domain. While this profile has proven valuable for evaluating properties of geographic partitions, existing algorithms for its computation rely on aggressive approximations and are still computationally expensive. In this paper, we propose a practical means of approximating the isoperimetric profile and show that for domains satisfying a“thick neck”condition, our approximation is exact. For more general domains, we show that our bound is still exact within a conservative regime and is otherwise an upper bound. Our method is based on a traversal of the medial axis which produces efficient and robust results. We compare our technique with the state‐of‐the‐art approximation to the isoperimetric profile on a variety of domains and show significantly tighter bounds than were previously achievable.

     
    more » « less
  3. Abstract

    Isotonic regression is a standard problem in shape-constrained estimation where the goal is to estimate an unknown non-decreasing regression function $f$ from independent pairs $(x_i, y_i)$ where ${\mathbb{E}}[y_i]=f(x_i), i=1, \ldots n$. While this problem is well understood both statistically and computationally, much less is known about its uncoupled counterpart, where one is given only the unordered sets $\{x_1, \ldots , x_n\}$ and $\{y_1, \ldots , y_n\}$. In this work, we leverage tools from optimal transport theory to derive minimax rates under weak moments conditions on $y_i$ and to give an efficient algorithm achieving optimal rates. Both upper and lower bounds employ moment-matching arguments that are also pertinent to learning mixtures of distributions and deconvolution.

     
    more » « less
  4. Abstract

    We consider the tasks of representing, analysing and manipulating maps between shapes. We model maps as densities over the product manifold of the input shapes; these densities can be treated as scalar functions and therefore are manipulable using the language of signal processing on manifolds. Being a manifold itself, the product space endows the set of maps with a geometry of its own, which we exploit to define map operations in the spectral domain; we also derive relationships with other existing representations (soft maps and functional maps). To apply these ideas in practice, we discretize product manifolds and their Laplace–Beltrami operators, and we introduce localized spectral analysis of the product manifold as a novel tool for map processing. Our framework applies to maps defined between and across 2D and 3D shapes without requiring special adjustment, and it can be implemented efficiently with simple operations on sparse matrices.

     
    more » « less
  5. We present a discretization-free scalable framework for solving a large class of mass-conserving partial differential equations (PDEs), including the time-dependent Fokker-Planck equation and the Wasserstein gradient flow. The main observation is that the time-varying velocity field of the PDE solution needs to be self-consistent: it must satisfy a fixed-point equation involving the probability flow characterized by the same velocity field. Instead of directly minimizing the residual of the fixed-point equation with neural parameterization, we use an iterative formulation with a biased gradient estimator that bypasses significant computational obstacles with strong empirical performance. Compared to existing approaches, our method does not suffer from temporal or spatial discretization, covers a wider range of PDEs, and scales to high dimensions. Experimentally, our method recovers analytical solutions accurately when they are available and achieves superior performance in high dimensions with less training time compared to alternatives. 
    more » « less
    Free, publicly-accessible full text available December 10, 2024
  6. Mixup is a popular regularization technique for training deep neural networks that improves generalization and increases robustness to certain distribution shifts. It perturbs input training data in the direction of other randomly-chosen instances in the training set. To better leverage the structure of the data, we extend mixup in a simple, broadly applicable way to k-mixup, which perturbs k-batches of training points in the direction of other k-batches. The perturbation is done with displacement interpolation, i.e. interpolation under the Wasserstein metric. We demonstrate theoretically and in simulations that k-mixup preserves cluster and manifold structures, and we extend theory studying the efficacy of standard mixup to the k-mixup case. Our empirical results show that training with k-mixup further improves generalization and robustness across several network architectures and benchmark datasets of differing modalities. For the wide variety of real datasets considered, the performance gains of k-mixup over standard mixup are similar to or larger than the gains of mixup itself over standard ERM after hyperparameter optimization. In several instances, in fact, k-mixup achieves gains in settings where standard mixup has negligible to zero improvement over ERM. 
    more » « less
    Free, publicly-accessible full text available November 14, 2024
  7. Computation of injective (or inversion-free) maps is a key task in geometry processing, physical simulation, and shape optimization. Despite being a longstanding problem, it remains challenging due to its highly nonconvex and combinatoric nature. We propose computation ofvariational quasi-harmonic mapsto obtain smooth inversion-free maps. Our work is built on a key observation about inversion-free maps: A planar map is a diffeomorphism if and only if it is quasi-harmonic and satisfies a special Cauchy boundary condition. We hence equate the inversion-free mapping problem to an optimal control problem derived from our theoretical result, in which we search in the space of parameters that define an elliptic PDE. We show that this problem can be solved by minimizing within a family of functionals. Similarly, our discretized functionals admit exactly injective maps as the minimizers, empirically producing inversion-free discrete maps of triangle meshes. We design efficient numerical procedures for our problem that prioritize robust convergence paths. Experiments show that on challenging examples our methods can achieve up to orders of magnitude improvement over state-of-the-art, in terms of speed or quality. Moreover, we demonstrate how to optimize a generic energy in our framework while restricting to quasi-harmonic maps.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  8. We propose a general convex optimization problem for computing regularized geodesic distances. We show that under mild conditions on the regularizer the problem is well posed. We propose three different regularizers and provide analytical solutions in special cases, as well as corresponding efficient optimization algorithms. Additionally, we show how to generalize the approach to the all pairs case by formulating the problem on the product manifold, which leads to symmetric distances. Our regularized distances compare favorably to existing methods, in terms of robustness and ease of calibration. 
    more » « less
    Free, publicly-accessible full text available July 23, 2024
  9. Although shape correspondence is a central problem in geometry processing, most methods for this task apply only to two-dimensional surfaces. The neglected task ofvolumetriccorrespondence—a natural extension relevant to shapes extracted from simulation, medical imaging, and volume rendering—presents unique challenges that do not appear in the two-dimensional case. In this work, we propose a method for mapping between volumes represented as tetrahedral meshes. Our formulation minimizes a distortion energy designed to extract maps symmetrically, i.e., without dependence on the ordering of the source and target domains. We accompany our method with theoretical discussion describing the consequences of this symmetry assumption, leading us to select a symmetrized ARAP energy that favors isometric correspondences. Our final formulation optimizes for near-isometry while matching the boundary. We demonstrate our method on a diverse geometric dataset, producing low-distortion matchings that align closely to the boundary.

     
    more » « less
    Free, publicly-accessible full text available June 30, 2024
  10. We introduce an optimal transport-based model for learning a metric tensor from cross-sectional samples of evolving probability measures on a common Riemannian manifold. We neurally parametrize the metric as a spatially-varying matrix field and efficiently optimize our model's objective using a simple alternating scheme. Using this learned metric, we can non-linearly interpolate between probability measures and compute geodesics on the manifold. We show that metrics learned using our method improve the quality of trajectory inference on scRNA and bird migration data at the cost of little additional cross-sectional data. 
    more » « less
    Free, publicly-accessible full text available May 1, 2024