skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1838327

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The leaf economics spectrum (LES) characterizes a tradeoff between building a leaf for durability versus for energy capture and gas exchange, with allocation to leaf dry mass per projected surface area (LMA) being a key trait underlying this tradeoff. However, regardless of the biomass supporting the leaf, high rates of gas exchange are typically accomplished by small, densely packed stomata on the leaf surface, which is enabled by smaller genome sizes. Here, we investigate how variation in genome size‐cell size allometry interacts with variation in biomass allocation (i.e. LMA) to influence the maximum surface conductance to CO2and the rate of resource turnover as measured by leaf water residence time. We sampled both evergreen and deciduousRhododendron(Ericaceae) taxa from wild populations and botanical gardens, including naturally occurring putative hybrids and artificially generated hybrids. We measured genome size, anatomical traits related to cell sizes, and morphological traits related to water content and dry mass allocation. Consistent with the LES, higher LMA was associated with slower water residence times, and LMA was strongly associated with leaf thickness. Although anatomical and morphological traits varied orthogonally to each other, cell size had a pervasive impact on leaf functional anatomy: for a given leaf thickness, reducing cell size elevated the leaf surface conductance and shortened the mean water residence time. These analyses clarify how anatomical traits related to genome size‐cell size allometry can influence leaf function independently of morphological traits related to leaf longevity and durability. 
    more » « less
  2. null (Ed.)
    Synopsis Information, energy, and matter are fundamental properties of all levels of biological organization, and life emerges from the continuous flux of matter, energy, and information. This perspective piece defines and explains each of the three pillars of this nexus. We propose that a quantitative characterization of the complex interconversions between matter, energy, and information that comprise this nexus will help us derive biological insights that connect phenomena across different levels of biological organization. We articulate examples from multiple biological scales that highlight how this nexus approach leads to a more complete understanding of the biological system. Metrics of energy, information, and matter can provide a common currency that helps link phenomena across levels of biological organization. The propagation of energy and information through levels of biological organization can result in emergent properties and system-wide changes that impact other hierarchical levels. Deeper consideration of measured imbalances in energy, information, and matter can help researchers identify key factors that influence system function at one scale, highlighting avenues to link phenomena across levels of biological organization and develop predictive models of biological systems. 
    more » « less
  3. Larracuente, Amanda (Ed.)
    Abstract Genome size in cellular organisms varies by six orders of magnitude, yet the cause of this large variation remains unexplained. The influential Drift-Barrier Hypothesis proposes that large genomes tend to evolve in small populations due to inefficient selection. However, to our knowledge no explicit tests of the Drift-Barrier Hypothesis have been reported. We performed the first explicit test, by comparing estimated census population size and genome size in mammals while incorporating potential covariates and the effect of shared evolutionary history. We found a lack of correlation between census population size and genome size among 199 species of mammals. These results suggest that population size is not the predominant factor influencing genome size and that the Drift-Barrier Hypothesis should be considered provisional. 
    more » « less
  4. null (Ed.)
    Maintaining high rates of photosynthesis in leaves requires efficient movement of CO 2 from the atmosphere to the mesophyll cells inside the leaf where CO 2 is converted into sugar. CO 2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO 2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO 2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO 2 diffusion into and through the leaf, maintaining high rates of CO 2 supply to the leaf mesophyll despite declining atmospheric CO 2 levels during the Cretaceous. 
    more » « less
  5. null (Ed.)