skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Maximum CO 2 diffusion inside leaves is limited by the scaling of cell size and genome size
Maintaining high rates of photosynthesis in leaves requires efficient movement of CO 2 from the atmosphere to the mesophyll cells inside the leaf where CO 2 is converted into sugar. CO 2 diffusion inside the leaf depends directly on the structure of the mesophyll cells and their surrounding airspace, which have been difficult to characterize because of their inherently three-dimensional organization. Yet faster CO 2 diffusion inside the leaf was probably critical in elevating rates of photosynthesis that occurred among angiosperm lineages. Here we characterize the three-dimensional surface area of the leaf mesophyll across vascular plants. We show that genome size determines the sizes and packing densities of cells in all leaf tissues and that smaller cells enable more mesophyll surface area to be packed into the leaf volume, facilitating higher CO 2 diffusion. Measurements and modelling revealed that the spongy mesophyll layer better facilitates gaseous phase diffusion while the palisade mesophyll layer better facilitates liquid-phase diffusion. Our results demonstrate that genome downsizing among the angiosperms was critical to restructuring the entire pathway of CO 2 diffusion into and through the leaf, maintaining high rates of CO 2 supply to the leaf mesophyll despite declining atmospheric CO 2 levels during the Cretaceous.  more » « less
Award ID(s):
1838327
PAR ID:
10295532
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
288
Issue:
1945
ISSN:
0962-8452
Page Range / eLocation ID:
20203145
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. As the site of almost all terrestrial carbon fixation, the mesophyll tissue is critical to leaf function. However, mesophyll tissue is not restricted only to leaves but also occurs in the laminar, heterotrophic organs of the floral perianth, providing a powerful test of how metabolic differences are linked to differences in tissue structure. Here, we compared mesophyll tissues of leaves and flower perianths of six species using high-resolution X-ray computed microtomography (microCT) imaging. Consistent with previous studies, stomata were nearly absent from flowers, and flowers had a significantly lower vein density compared to leaves. However, mesophyll porosity was significantly higher in flowers than in leaves, and higher mesophyll porosity was associated with more aspherical mesophyll cells. Despite these differences in cell and tissue structure between leaf and flower mesophyll, modeled intercellular airspace conductance did not differ significantly between organs, regardless of differences in stomatal density between organs. These results suggest that in addition to differences between leaves and flowers in vein and stomatal densities, the mesophyll cells and tissues inside these organs also exhibit marked differences that may allow for flowers to be relatively cheaper in terms of biomass investment per unit of flower surface area. 
    more » « less
  2. Abstract Uncertainty about long‐term leaf‐level responses to atmospheric CO2rise is a major knowledge gap that exists because of limited empirical data. Thus, it remains unclear how responses of leaf gas exchange to elevated CO2(eCO2) vary among plant species and functional groups, or across different levels of nutrient supply, and whether they persist over time for long‐lived perennials. Here, we report the effects of eCO2on rates of net photosynthesis and stomatal conductance in 14 perennial grassland species from four functional groups over two decades in a Minnesota Free‐Air CO2Enrichment experiment, BioCON. Monocultures of species belonging to C3grasses, C4grasses, forbs, and legumes were exposed to two levels of CO2and nitrogen supply in factorial combinations over 21 years. eCO2increased photosynthesis by 12.9% on average in C3species, substantially less than model predictions of instantaneous responses based on physiological theory and results of other studies, even those spanning multiple years. Acclimation of photosynthesis to eCO2was observed beginning in the first year and did not strengthen through time. Yet, contrary to expectations, the response of photosynthesis to eCO2was not enhanced by increased nitrogen supply. Differences in responses among herbaceous plant functional groups were modest, with legumes responding the most and C4grasses the least as expected, but did not further diverge over time. Leaf‐level water‐use efficiency increased by 50% under eCO2primarily because of reduced stomatal conductance. Our results imply that enhanced nitrogen supply will not necessarily diminish photosynthetic acclimation to eCO2in nitrogen‐limited systems, and that significant and consistent declines in stomatal conductance and increases in water‐use efficiency under eCO2may allow plants to better withstand drought. 
    more » « less
  3. Salter, William (Ed.)
    Abstract Photosynthesis is co-limited by multiple factors depending on the plant and its environment. These include biochemical rate limitations, internal and external water potentials, temperature, irradiance and carbon dioxide ( CO2). Amphistomatous leaves have stomata on both abaxial and adaxial leaf surfaces. This feature is considered an adaptation to alleviate CO2 diffusion limitations in productive environments as the diffusion path length from stomate to chloroplast is effectively halved in amphistomatous leaves. Plants may also reduce CO2 limitations through other aspects of optimal stomatal anatomy: stomatal density, distribution, patterning and size. Some studies have demonstrated that stomata are overdispersed compared to a random distribution on a single leaf surface; however, despite their prevalence in nature and near ubiquity among crop species, much less is known about stomatal anatomy in amphistomatous leaves, especially the coordination between leaf surfaces. Here, we use novel spatial statistics based on simulations and photosynthesis modelling to test hypotheses about how amphistomatous plants may optimize CO2 diffusion in the model angiosperm Arabidopsis thaliana grown in different light environments. We find that (i) stomata are overdispersed, but not ideally dispersed, on both leaf surfaces across all light treatments; (ii) the patterning of stomata on abaxial and adaxial leaf surfaces is independent and (iii) the theoretical improvements to photosynthesis from abaxial–adaxial stomatal coordination are miniscule (≪1%) across the range of feasible parameter space. However, we also find that (iv) stomatal size is correlated with the mesophyll volume that it supplies with CO2, suggesting that plants may optimize CO2 diffusion limitations through alternative pathways other than ideal, uniform stomatal spacing. We discuss the developmental, physical and evolutionary constraints that may prohibit plants from reaching this theoretical adaptive peak of uniform stomatal spacing and inter-surface stomatal coordination. These findings contribute to our understanding of variation in the anatomy of amphistomatous leaves. 
    more » « less
  4. Summary High concentrations of dissolved inorganic carbon in stems of herbaceous and woody C3plants exit leaves in the dark. In the light, C3species use a small portion of xylem‐transported CO2for leaf photosynthesis. However, it is not known if xylem‐transported CO2will exit leaves in the dark or be used for photosynthesis in the light in Kranz‐type C4plants.Cut leaves ofAmaranthus hypochondriacuswere placed in one of three solutions of [NaH13CO3] dissolved in KCl water to measure the efflux of xylem‐transported CO2exiting the leaf in the dark or rates of assimilation of xylem‐transported CO2* in the light, in real‐time, using a tunable diode laser absorption spectroscope.In the dark, the efflux of xylem‐transported CO2increased with increasing rates of transpiration and [13CO2*]; however, rates of13CeffluxinA. hypochondriacuswere lower compared to C3species. In the light,A. hypochondriacusfixed nearly 75% of the xylem‐transported CO2supplied to the leaf.Kranz anatomy and biochemistry likely influence the efflux of xylem‐transported CO2out of cut leaves ofA. hypochondriacusin the dark, as well as the use of xylem‐transported CO2* for photosynthesis in the light. Thus increasing the carbon use efficiency of Kranz‐type C4species over C3species. 
    more » « less
  5. ABSTRACT Photosynthesis is the largest flux of carbon between the atmosphere and Earth's surface and is driven by enzymes that require nitrogen, namely, ribulose‐1,5‐bisphosphate (RuBisCO). Thus, photosynthesis is a key link between the terrestrial carbon and nitrogen cycle, and the representation of this link is critical for coupled carbon‐nitrogen land surface models. Models and observations suggest that soil nitrogen availability can limit plant productivity increases under elevated CO2. Plants acclimate to elevated CO2by downregulating RuBisCO and thus nitrogen in leaves, but this acclimation response is not currently included in land surface models. Acclimation of photosynthesis to CO2can be simulated by the photosynthetic optimality theory in a way that matches observations. Here, we incorporated this theory into the land surface component of the Energy Exascale Earth System Model (ELM). We simulated land surface carbon and nitrogen processes under future elevated CO2conditions to 2100 using the RCP8.5 high emission scenario. Our simulations showed that when photosynthetic acclimation is considered, photosynthesis increases under future conditions, but maximum RuBisCO carboxylation and thus photosynthetic nitrogen demand decline. We analyzed two simulations that differed as to whether the saved nitrogen could be used in other parts of the plant. The allocation of saved leaf nitrogen to other parts of the plant led to (1) a direct alleviation of plant nitrogen limitation through reduced leaf nitrogen requirements and (2) an indirect reduction in plant nitrogen limitation through an enhancement of root growth that led to increased plant nitrogen uptake. As a result, reallocation of saved leaf nitrogen increased ecosystem carbon stocks by 50.3% in 2100 as compared to a simulation without reallocation of saved leaf nitrogen. These results suggest that land surface models may overestimate future ecosystem nitrogen limitation if they do not incorporate leaf nitrogen savings resulting from photosynthetic acclimation to elevated CO2
    more » « less