skip to main content


Search for: All records

Award ID contains: 1839234

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Machine learning (ML) is relied on for materials spectroscopy. It is challenging to make ML models fail because statistical correlations can mimic the physics without causality. Here, using a benchmark band‐excitation piezoresponse force microscopy polarization spectroscopy (BEPS) dataset the pitfalls of the so‐called “better”, “faster”, and “less‐biased” ML of electromechanical switching are demonstrated and overcome. Using a toy and real experimental dataset, it is demonstrated how linear nontemporal ML methods result in physically reasonable embedding (eigenvalues) while producing nonsensical eigenvectors and generated spectra, promoting misleading interpretations. A new method of unsupervised multimodal hyperspectral analysis of BEPS is demonstrated using long‐short‐term memory (LSTM) β‐variational autoencoders (β‐VAEs) . By including LSTM neurons, the ordinal nature of ferroelectric switching is considered. To improve the interpretability of the latent space, a variational Kullback–Leibler‐divergency regularization is imposed . Finally, regularization scheduling of β as a disentanglement metric is leveraged to reduce user bias. Combining these experiment‐inspired modifications enables the automated detection of ferroelectric switching mechanisms, including a complex two‐step, three‐state one. Ultimately, this work provides a robust ML method for the rapid discovery of electromechanical switching mechanisms in ferroelectrics and is applicable to other multimodal hyperspectral materials spectroscopies.

     
    more » « less
  2. Abstract

    Ferroelectrics are being increasingly called upon for electronic devices in extreme environments. Device performance and energy efficiency is highly correlated to clock frequency, operational voltage, and resistive loss. To increase performance it is common to engineer ferroelectric domain structure with highly‐correlated electrical and elastic coupling that elicit fast and efficient collective switching. Designing domain structures with advantageous properties is difficult because the mechanisms involved in collective switching are poorly understood and difficult to investigate. Collective switching is a hierarchical process where the nano‐ and mesoscale responses control the macroscopic properties. Using chemical solution synthesis, epitaxially nearly‐relaxed (100) BaTiO3films are synthesized. Thermal strain induces a strongly‐correlated domain structure with alternating domains of polarization along the [010] and [001] in‐plane axes and 90° domain walls along the [011] or [01] directions. Simultaneous capacitance–voltage measurements and band‐excitation piezoresponse force microscopy revealed strong collective switching behavior. Using a deep convolutional autoencoder, hierarchical switching is automatically tracked and the switching pathway is identified. The collective switching velocities are calculated to be ≈500 cm s−1at 5 V (7 kV cm−1), orders‐of‐magnitude faster than expected. These combinations of properties are promising for high‐speed tunable dielectrics and low‐voltage ferroelectric memories and logic.

     
    more » « less
  3. Abstract

    In pursuit of scientific discovery, vast collections of unstructured structural and functional images are acquired; however, only an infinitesimally small fraction of this data is rigorously analyzed, with an even smaller fraction ever being published. One method to accelerate scientific discovery is to extract more insight from costly scientific experiments already conducted. Unfortunately, data from scientific experiments tend only to be accessible by the originator who knows the experiments and directives. Moreover, there are no robust methods to search unstructured databases of images to deduce correlations and insight. Here, we develop a machine learning approach to create image similarity projections to search unstructured image databases. To improve these projections, we develop and train a model to include symmetry-aware features. As an exemplar, we use a set of 25,133 piezoresponse force microscopy images collected on diverse materials systems over five years. We demonstrate how this tool can be used for interactive recursive image searching and exploration, highlighting structural similarities at various length scales. This tool justifies continued investment in federated scientific databases with standardized metadata schemas where the combination of filtering and recursive interactive searching can uncover synthesis-structure-property relations. We provide a customizable open-source package (https://github.com/m3-learning/Recursive_Symmetry_Aware_Materials_Microstructure_Explorer) of this interactive tool for researchers to use with their data.

     
    more » « less
  4. This is a dataset of 1,000,000 images representing the 17 wallpaper group symmetries. Data is split into testing, training, and validation. This data was used to create a feature extractor for recursive image similarity searching. Additional information will be available in peer-reviewed journals upon publication.  

    {"references": ["https://imagenet.stanford.edu/"]} 
    more » « less
  5. null (Ed.)
    Abstract Ferroelectric domain walls are promising quasi-2D structures that can be leveraged for miniaturization of electronics components and new mechanisms to control electronic signals at the nanoscale. Despite the significant progress in experiment and theory, however, most investigations on ferroelectric domain walls are still on a fundamental level, and reliable characterization of emergent transport phenomena remains a challenging task. Here, we apply a neural-network-based approach to regularize local I ( V )-spectroscopy measurements and improve the information extraction, using data recorded at charged domain walls in hexagonal (Er 0.99 ,Zr 0.01 )MnO 3 as an instructive example. Using a sparse long short-term memory autoencoder, we disentangle competing conductivity signals both spatially and as a function of voltage, facilitating a less biased, unconstrained and more accurate analysis compared to a standard evaluation of conductance maps. The neural-network-based analysis allows us to isolate extrinsic signals that relate to the tip-sample contact and separating them from the intrinsic transport behavior associated with the ferroelectric domain walls in (Er 0.99 ,Zr 0.01 )MnO 3 . Our work expands machine-learning-assisted scanning probe microscopy studies into the realm of local conductance measurements, improving the extraction of physical conduction mechanisms and separation of interfering current signals. 
    more » « less