skip to main content


Search for: All records

Award ID contains: 1841559

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    As one of the most prominent weather systems over the Indian subcontinent, the Indian summer monsoon low pressure systems (MLPSs) have been studied extensively over the past decades. However, the processes that govern the growth of the MLPSs are not well understood. To better understand these processes, we created an MLPS index using bandpass-filtered precipitation data. Lag regression maps and vertical cross sections are used to document the distribution of moisture, moist static energy (MSE), geopotential, and horizontal and vertical motions in these systems. It is shown that moisture governs the distribution of MSE and is in phase with precipitation, vertical motion, and geopotential during the MLPS cycle. Examination of the MSE budget reveals that longwave radiative heating maintains the MSE anomalies against dissipation from vertical MSE advection. These processes nearly cancel one another, and it is variations in horizontal MSE advection that are found to explain the growth and decay of the MSE anomalies. Horizontal MSE advection contributes to the growth of the MSE anomalies in MLPSs prior to the system attaining a maximum amplitude and contributes to decay thereafter. The horizontal MSE advection is largely due to meridional advection of mean state MSE by the anomalous winds, suggesting that the MSE anomalies undergo a moisture–vortex instability (MVI)-like growth. In contrast, perturbation kinetic energy (PKE) is generated through barotropic conversion. The structure, propagation, and energetics of the regressed MLPSs are consistent with both barotropic and moisture–vortex growth.

     
    more » « less
  2. Abstract

    A linear two-layer model is used to elucidate the role of prognostic moisture on quasigeostrophic (QG) motions in the presence of a mean thermal wind (). Solutions to the basic equations reveal two instabilities that can explain the growth of moist QG systems. The well-documented baroclinic instability is characterized by growth at the synoptic scale (horizontal scale of ~1000 km) and systems that grow from this instability tilt against the shear. Moisture–vortex instability—an instability that occurs when moisture and lower-tropospheric vorticity exhibit an in-phase component—exists only when moisture is prognostic. The instability is also strongest at the synoptic scale, but systems that grow from it exhibit a vertically stacked structure. When moisture is prognostic andis easterly, baroclinic instability exhibits a pronounced weakening while moisture vortex instability is amplified. The strengthening of moisture–vortex instability at the expense of baroclinic instability is due to the baroclinic () component of the lower-tropospheric flow. In westward-propagating systems, lower-tropospheric westerlies associated with an easterlyadvect anomalous moisture and the associated convection toward the low-level vortex. The advected convection causes the vertical structure of the wave to shift away from one that favors baroclinic instability to one that favors moisture–vortex instability. On the other hand, a westerlyreinforces the phasing between moisture and vorticity necessary for baroclinic instability to occur. Based on these results, it is hypothesized that moisture–vortex instability is an important instability in humid regions of easterlysuch as the South Asian and West African monsoons.

     
    more » « less
  3. ABSTRACT: Convective quasi-equilibrium (QE) and weak temperature gradient (WTG) balances are frequently employed to study the tropical atmosphere. This study uses linearized equatorial beta-plane solutions to examine the relevant regimes for these balances. Wave solutions are characterized by moisture–temperature ratio (q–T ratio) and dominant thermodynamic balances. An empirically constrained precipitation closure assigns different sensitivities of convection to temperature («t) and moisture («q). Longwave equatorial Kelvin and Rossby waves tend toward the QE balance with q–T ratios of «t:«q that can be ;1–3. Departures from strict QE, essential to both precipitation and wave dynamics, grow with wavenumber. The propagating QE modes have reduced phase speeds because of the effective gross moist stability meff, with a further reduction when «t . 0. Moisture modes obeying the WTG balance and with large q–T ratios (.10) emerge in the shortwave regime; these modes exist with both Kelvin and Rossby wave meridional structures. In the y 50 case, long propagating gravity waves are absent and only emerge beyond a cutoff wavenumber. Two bifurcations in the wave solutions are identified and used to locate the spatial scales for QE–WTG transition and gravity wave emergence. These scales are governed by the competition between the convection and gravity wave adjustment times and are modulated by meff. Near-zero values ofmeff shift theQE–WTGtransition wavenumber toward zero. Continuous transitions replace the bifurcations when meff , 0 or moisture advection/WISHE mechanisms are included, but the wavenumber-dependent QE and WTG balances remain qualitatively unaltered. Rapidly decaying convective/gravity wave modes adjust to the slowly evolving QE/WTG state in the longwave/shortwave regimes, respectively. 
    more » « less
  4. Observations and theory of convectively coupled equatorial waves suggest that they can be categorized into two distinct groups. Moisture modes are waves whose thermodynamics are governed by moisture fluctuations. The thermodynamics of the gravity wave group, on the other hand, are rooted in buoyancy (temperature) fluctuations. On the basis of scale analysis, it is found that a simple nondimensional parameter—akin to the Rossby number—can explain the processes that lead to the existence of these two groups. This parameter, defined as N mode , indicates that moisture modes arise when anomalous convection lasts sufficiently long so that dry gravity waves eliminate the temperature anomalies in the convective region, satisfying weak temperature gradient (WTG) balance. This process causes moisture anomalies to dominate the distribution of moist enthalpy (or moist static energy), and hence the evolution of the wave. Conversely, convectively coupled gravity waves arise when anomalous convection eliminates the moisture anomalies more rapidly than dry gravity waves can adjust the troposphere toward WTG balance, causing temperature to govern the moist enthalpy distribution and evolution. Spectral analysis of reanalysis data indicates that slowly propagating waves ( c p ~ 3 m s −1 ) are likely to be moisture modes while fast waves ( c p ~ 30 m s −1 ) exhibit gravity wave behavior, with “mixed moisture–gravity” waves existing in between. While these findings are obtained from a highly idealized framework, it is hypothesized that they can be extended to understand simulations of convectively coupled waves in GCMs and the thermodynamics of more complex phenomena. 
    more » « less
  5. In this paper, it is shown that westward-propagating monsoon-low-pressure-system-like disturbances in the South Asian monsoon region can be simulated in an idealized moist general circulation model through the addition of a simplified parameterization of land. Land is parameterized as having one-tenth the heat capacity of the surrounding slab ocean, with evaporation limited by a bucket hydrology model. In this model, the prominent topography of the Tibetan Plateau does not appear to be necessary for these storm systems to form or propagate; therefore focus is placed on the simulation with land but no topography. The properties of the simulated storms are elucidated using regression analysis and compared to results from composites of storms from comprehensive GCMs in prior literature and reanalysis. The storms share a similar vertical profile in anomalous Ertel potential vorticity to those in reanalysis. Propagation, however, does not seem to be strongly dictated by beta-drift. Rather, it seems to be more closely consistent with linear moisture vortex instability theory, with the exception of the importance of the vertical advection term in the Ertel potential vorticity budget toward the growth and maintenance of disturbances. The results presented here suggest that a simplified GCM configuration might be able to be used to gain a clearer understanding of the sensitivity of monsoon low pressure systems to changes in the mean state climate. 
    more » « less