Observations and theory of convectively coupled equatorial waves suggest that they can be categorized into two distinct groups. Moisture modes are waves whose thermodynamics are governed by moisture fluctuations. The thermodynamics of the gravity wave group, on the other hand, are rooted in buoyancy (temperature) fluctuations. On the basis of scale analysis, it is found that a simple nondimensional parameter—akin to the Rossby number—can explain the processes that lead to the existence of these two groups. This parameter, defined as N mode , indicates that moisture modes arise when anomalous convection lasts sufficiently long so that dry gravity waves eliminate the temperature anomalies in the convective region, satisfying weak temperature gradient (WTG) balance. This process causes moisture anomalies to dominate the distribution of moist enthalpy (or moist static energy), and hence the evolution of the wave. Conversely, convectively coupled gravity waves arise when anomalous convection eliminates the moisture anomalies more rapidly than dry gravity waves can adjust the troposphere toward WTG balance, causing temperature to govern the moist enthalpy distribution and evolution. Spectral analysis of reanalysis data indicates that slowly propagating waves ( c p ~ 3 m s −1 ) are likely to be moisture modes while fast waves ( c p ~ 30 m s −1 ) exhibit gravity wave behavior, with “mixed moisture–gravity” waves existing in between. While these findings are obtained from a highly idealized framework, it is hypothesized that they can be extended to understand simulations of convectively coupled waves in GCMs and the thermodynamics of more complex phenomena.
more »
« less
Quasi-Equilibrium and Weak Temperature Gradient Balances in an Equatorial Beta-plane Model
ABSTRACT: Convective quasi-equilibrium (QE) and weak temperature gradient (WTG) balances are frequently employed to study the tropical atmosphere. This study uses linearized equatorial beta-plane solutions to examine the relevant regimes for these balances. Wave solutions are characterized by moisture–temperature ratio (q–T ratio) and dominant thermodynamic balances. An empirically constrained precipitation closure assigns different sensitivities of convection to temperature («t) and moisture («q). Longwave equatorial Kelvin and Rossby waves tend toward the QE balance with q–T ratios of «t:«q that can be ;1–3. Departures from strict QE, essential to both precipitation and wave dynamics, grow with wavenumber. The propagating QE modes have reduced phase speeds because of the effective gross moist stability meff, with a further reduction when «t . 0. Moisture modes obeying the WTG balance and with large q–T ratios (.10) emerge in the shortwave regime; these modes exist with both Kelvin and Rossby wave meridional structures. In the y 50 case, long propagating gravity waves are absent and only emerge beyond a cutoff wavenumber. Two bifurcations in the wave solutions are identified and used to locate the spatial scales for QE–WTG transition and gravity wave emergence. These scales are governed by the competition between the convection and gravity wave adjustment times and are modulated by meff. Near-zero values ofmeff shift theQE–WTGtransition wavenumber toward zero. Continuous transitions replace the bifurcations when meff , 0 or moisture advection/WISHE mechanisms are included, but the wavenumber-dependent QE and WTG balances remain qualitatively unaltered. Rapidly decaying convective/gravity wave modes adjust to the slowly evolving QE/WTG state in the longwave/shortwave regimes, respectively.
more »
« less
- Award ID(s):
- 1841559
- PAR ID:
- 10320880
- Date Published:
- Journal Name:
- Journal of the atmospheric sciences
- Volume:
- 78
- ISSN:
- 0022-4928
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Linearized wave solutions on the equatorial beta plane are examined in the presence of a background meridional moisture gradient. Of interest is a slow, eastward-propagating n = 1 mode that is unstable at planetary scales and only exists for a small range of zonal wavenumbers ( ). The mode dispersion curve appears as an eastward extension of the westward-propagating equatorial Rossby wave solution. This mode is therefore termed the eastward-propagating equatorial Rossby wave (ERW). The zonal wavenumber-2 ERW horizontal structure consists of a low-level equatorial convergence center flanked by quadrupole off-equatorial gyres, and resembles the horizontal structure of the observed MJO. An analytic, leading-order dispersion relationship for the ERW shows that meridional moisture advection imparts eastward propagation, and that the smallness of a gross moist stability–like parameter contributes to the slow phase speed. The ERW is unstable near planetary scales when low-level easterlies moisten the column. This moistening could come from either zonal moisture advection or surface fluxes or a combination thereof. When westerlies instead moisten the column, the ERW is damped and the westward-propagating long Rossby wave is unstable. The ERW does not exist when the meridional moisture gradient is too weak. A moist static energy budget analysis shows that the ERW scale selection is partly due to finite-time-scale convective adjustment and less effective zonal wind–induced moistening at smaller scales. Similarities in the phase speed, preferred scale, and horizontal structure suggest that the ERW is a beta-plane analog of the MJO.more » « less
-
Abstract A recently developed linear model of eastward-propagating disturbances has two separate unstable modes: convectively coupled Kelvin waves destabilized by the wind dependence of the surface enthalpy flux, and slow, MJO-like modes destabilized by cloud–radiation interaction and driven eastward by surface enthalpy fluxes. This latter mode survives the weak temperature gradient (WTG) approximation and has a time scale dictated by the time it takes for surface fluxes to moisten tropospheric columns. Here we extend that model to include higher-order modes and show that planetary-scale low-frequency waves with more complex structures can also be amplified by cloud–radiation interactions. While most of these waves survive the WTG approximation, their frequencies and growth rates are seriously compromised by that approximation. Applying instead the assumption of zonal geostrophy results in a better approximation to the full spectrum of modes. For small cloud–radiation and surface flux feedbacks, Kelvin waves and equatorial Rossby waves are destabilized, but when these feedbacks are strong enough, the frequencies do not lie close to classical equatorial dispersion curves except in the case of higher-frequency Kelvin and Yanai waves. An eastward-propagating n = 1 mode, in particular, has a structure resembling the observed structure of the MJO.more » « less
-
Abstract A plume model applied to radiosonde observations and the fifth generation ECMWF atmospheric reanalysis (ERA5) is used to assess the relative importance of lower-tropospheric moisture and temperature variability in the convective coupling of equatorial waves. Regression and wavenumber–frequency coherence analyses of satellite precipitation, outgoing longwave radiation (OLR), and plume model estimates of lower-tropospheric vertically integrated buoyancy (〈B〉) are used to identify the spatial and temporal scales where these variables are highly correlated. Precipitation and OLR show little coherence with 〈B〉 when zero entrainment is prescribed in the plume model. In contrast, precipitation and OLR vary coherently with 〈B〉 when “deep inflow” entrainment is prescribed, highlighting that entrainment occurring over a deep layer of the lower troposphere plays an important role in modifying the thermodynamic properties of convective plumes in the tropics. Consistent with previous studies, moisture variability is found to play a more dominant role than temperature variability in the convective coupling of the Madden–Julian oscillation (MJO) and equatorial Rossby (ER) waves, while temperature variability is found to play an important role in the convective coupling of Kelvin (KW) and inertio-gravity (IG) waves. Convective coupling is most strongly impacted by moisture variations in the 925–850- and 825–600-hPa layers for the MJO and ERs, and by 825–600-hPa temperature variations in KWs and IGs, with 1000–950-hPa moist static energy variations playing a relatively small role in convective coupling. Simulations of the Energy Exascale Earth System Model (E3SM), version 2, and a preoperational prototype of NOAA Global Forecast System (GFS) V17 are examined, the former showing unrealistically high coherence between precipitation and 1000-hPa moist static energy, the latter a more realistic relationship.more » « less
-
Abstract The spontaneous self-aggregation (SA) of convection in idealized model experiments highlights the importance of interactions between tropical convection and the surrounding environment. The authors have shown that SA fundamentally changes with the background rotation in previousf-plane simulations, in terms of both the resulting forms of organized convection and the relative roles of the physical feedbacks driving them. This study considers the dependence of SA on rotation in one large domain on theβplane, introducing an additional layer of complexity. Simulations are performed with uniform thermal forcing and explicit convection. Focuses include statistical and structural analysis of the convective modes, process-oriented diagnostics of how they develop, and resulting mean states. Two regimes of SA emerge within the first 15 days, separated by a critical zone wherefis analogous to 10°–15° latitude. Organized convection at near-equatorial values offprimarily consists of convectively coupled Kelvin waves. Wind speed–surface enthalpy flux feedbacks are the dominant process driving moisture variability early on, then clear-sky shortwave radiative feedbacks are strongest in wave maintenance. In contrast, at higherf, numerous tropical cyclones develop and coexist, dominated by surface flux and longwave processes. Tropical cyclogenesis is most pronounced at intermediatef(analogous to 25°–40°), but are longer-lived at higherf. The resulting modes of SA at lowfdiffer between theseβ-plane simulations (convectively coupled waves) and priorf-plane simulations (weak tropical cyclones or nonrotating clusters). Otherwise, these results provide further evidence for the changing roles of radiative, surface flux, and advective processes in influencing SA asfchanges, as found in our previous study. Significance StatementIn model simulations, convection often self-organizes due to interactions with its surrounding environment. These interactions are relevant in the real-world organization of rainfall and clouds, and may thus be useful to understand for improved prediction of tropical weather and climate. Previous work using a set of simple model experiments with constant Coriolis force showed that at different latitudes, different processes dominate, and different types of organized convection result. This study verifies that finding using a more complex and realistic model, where the Coriolis force varies within the domain to resemble different latitudes. Specifically, the convection here self-organizes into atmospheric waves (periodic disturbances) at low latitudes, and tropical cyclones at high latitudes.more » « less
An official website of the United States government

