skip to main content


Title: Monsoon low pressure system like variability in an idealized moist model
In this paper, it is shown that westward-propagating monsoon-low-pressure-system-like disturbances in the South Asian monsoon region can be simulated in an idealized moist general circulation model through the addition of a simplified parameterization of land. Land is parameterized as having one-tenth the heat capacity of the surrounding slab ocean, with evaporation limited by a bucket hydrology model. In this model, the prominent topography of the Tibetan Plateau does not appear to be necessary for these storm systems to form or propagate; therefore focus is placed on the simulation with land but no topography. The properties of the simulated storms are elucidated using regression analysis and compared to results from composites of storms from comprehensive GCMs in prior literature and reanalysis. The storms share a similar vertical profile in anomalous Ertel potential vorticity to those in reanalysis. Propagation, however, does not seem to be strongly dictated by beta-drift. Rather, it seems to be more closely consistent with linear moisture vortex instability theory, with the exception of the importance of the vertical advection term in the Ertel potential vorticity budget toward the growth and maintenance of disturbances. The results presented here suggest that a simplified GCM configuration might be able to be used to gain a clearer understanding of the sensitivity of monsoon low pressure systems to changes in the mean state climate.  more » « less
Award ID(s):
1841559
NSF-PAR ID:
10127928
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Journal of Climate
ISSN:
0894-8755
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    A dry-core idealized general circulation model with a stratospheric polar vortex in the Northern Hemisphere is run with a combination of simplified topography and imposed tropospheric temperature perturbations, each located in the Northern Hemisphere with a zonal wavenumber of 1. The phase difference between the imposed temperature wave and the topography is varied to understand what effect this has on the occurrence of polar vortex displacements. Geometric moments are used to identify the centroid of the polar vortex for the purposes of classifying whether or not the polar vortex is displaced. Displacements of the polar vortex are a response to increased tropospheric wave activity. Compared to a model run with only topography, the likelihood of the polar vortex being displaced increases when the warm region is located west of the topography peak, and decreases when the cold region is west of the topography peak. This response from the polar vortex is due to the modulation of vertically propagating wave activity by the temperature forcing. When the southerly winds on the western side of the topographically forced anticyclone are collocated with warm- or cold-temperature forcing, the vertical wave activity flux in the troposphere becomes more positive or negative, respectively. This is in line with recent reanalysis studies that showed that anomalous warming west of the surface pressure high, in the climatological standing wave, precedes polar vortex disturbances.

     
    more » « less
  2. Abstract This work examines the effect of horizontal resolution and topography on the North American monsoon (NAM) in experiments with an atmospheric general circulation model. Observations are used to evaluate the fidelity of the representation of the monsoon in simulations from the Community Atmosphere Model version 5 (CAM5) with a standard 1.0° grid spacing and a high-resolution 0.25° grid spacing. The simulated monsoon has some realistic features, but both configurations also show precipitation biases. The default 1.0° grid spacing configuration simulates a monsoon with an annual cycle and intensity of precipitation within the observational range, but the monsoon begins and ends too gradually and does not reach far enough north. This study shows that the improved representation of topography in the high-resolution (0.25° grid spacing) configuration improves the regional circulation and therefore some aspects of the simulated monsoon compared to the 1.0° counterpart. At higher resolution, CAM5 simulates a stronger low pressure center over the American Southwest, with more realistic low-level wind flow than in the 1.0° configuration. As a result, the monsoon precipitation increases as does the amplitude of the annual cycle of precipitation. A moisture analysis sheds light on the monsoon dynamics, indicating that changes in the advection of enthalpy and moist static energy drive the differences between monsoon precipitation in CAM5 1.0° compared to the 0.25° configuration. Additional simulations confirm that these improvements are mainly due to the topographic influence on the low-level flow through the Gulf of California, and not only the increase in horizontal resolution. 
    more » « less
  3. Abstract

    A new mechanism is proposed as a potential cause for the one‐third of warm season severe nocturnal convection in the US Great Plains that develops in environments without the presence of air‐mass boundaries of fronts or mesoscale systems. This mechanism is tested in two‐ and three‐dimensional models. Results show strong ascent (∼1.0 m·s−1), sufficient for nocturnal convection initiation, arising from interactions of mean westerly zonal wind with the vertical shear of a northern vortex and also perturbation westerly winds that are created by the Coriolis torque on the Great Plains southerly low‐level jet. The interaction involving the northern vortex results in organized strong ascent on the east side of the vortex from the near‐surface level to the top of the model atmosphere, and also a weak upward acceleration near the centre of the vortex. In simulations with westerly wind perturbations, strong and organized ascent occurs above and on the east side of the westerly perturbation winds. The upward motion in these simulations relies on both mechanical forcing from non‐hydrostatic pressure perturbations and buoyant acceleration caused by interactions of the westerly zonal wind and the vertical shear in the vortex or the perturbation westerly wind. Statistical tests confirm that these interactions, not the northern vortex or westerly perturbation itself and related shear, are essential for the simulated vertical motion. Additional sensitivity analysis indicates robust ascent across a wide range of westerly perturbation or northern vortex strengths. The vertical motion profile is not sensitive to the horizontal grid spacing of the model, at least at or below 4 km, but to the morphology of westerly wind perturbations. The latter suggests where improvement could be made to increase the accuracy of model prediction of nocturnal convective storms in the US Great Plains.

     
    more » « less
  4. null (Ed.)
    Abstract This study investigates the transition of a Panama Bight mesoscale convective system (MCS) into the easterly wave (EW) that became Hurricane Carlotta (2012). Reanalysis, observations, and a convective-permitting Weather Research and Forecasting (WRF) Model simulation are used to analyze the processes contributing to EW genesis. A vorticity budget analysis shows that convective coupling and vortex stretching are very important to the transition in this case, while horizontal advection is mostly responsible for the propagation of the system. In the model, the disturbance is dominated by stratiform vertical motion profiles and a midlevel vortex, while the system is less top-heavy and is characterized by more prominent low-level vorticity later in the transition in reanalysis. The developing disturbance starts its evolution as a mesoscale convective system in the Bight of Panama. Leading up to MCS formation the Chocó jet intensifies, and during the MCS-to-EW transition the Papagayo jet strengthens. Differences in the vertical structure of the system between reanalysis and the model suggest that the relatively more bottom-heavy disturbance in reanalysis may have stronger interactions with the Papagayo jet. Field observations like those collected during the Organization of Tropical East Pacific Convection (OTREC) campaign are needed to further our understanding of this east Pacific EW genesis pathway and the factors that influence it, including the important role for the vertical structure of the developing disturbances in the context of the vorticity budget. 
    more » « less
  5. null (Ed.)
    Abstract The relationship between storm-relative helicity (SRH) and streamwise vorticity ωs is frequently invoked to explain the often robust connections between effective inflow layer (EIL) SRH and various supercell updraft properties. However, the definition of SRH also contains storm-relative (SR) flow, and the separate influences of SR flow and ωs on updraft dynamics are therefore convolved when SRH is used as a diagnostic tool. To clarify this issue, proximity soundings and numerical experiments are used to disentangle the separate influences of EIL SR flow and ωs on supercell updraft characteristics. Our results suggest that the magnitude of EIL ωs has little influence on whether supercellular storm mode occurs. Rather, the transition from nonsupercellular to supercellular storm mode is largely modulated by the magnitude of EIL SR flow. Furthermore, many updraft attributes such as updraft width, maximum vertical velocity, vertical mass flux at all levels, and maximum vertical vorticity at all levels are largely determined by EIL SR flow. For a constant EIL SR flow, storms with large EIL ωs have stronger low-level net rotation and vertical velocities, which affirms previously established connections between ωs and tornadogenesis. EIL ωs also influences storms’ precipitation and cold-pool patterns. Vertical nonlinear dynamic pressure acceleration (NLDPA) is larger at low levels when EIL ωs is large, but differences in NLDPA aloft become uncorrelated with EIL ωs because storms’ midlevel dynamic pressure perturbations are substantially influenced by the tilting of midlevel vorticity. Our results emphasize the importance of considering EIL SR flow in addition to EIL SRH in the research and forecasting of supercell properties. 
    more » « less