skip to main content


Title: Explicable Planning as Minimizing Distance from Expected Behavior
In order to achieve effective human-AI collaboration, it is necessary for an AI agent to align its behavior with the human's expectations. When the agent generates a task plan without such considerations, it may often result in inexplicable behavior from the human's point of view. This may have serious implications for the human, from increased cognitive load to more serious concerns of safety around the physical agent. In this work, we present an approach to generate explicable behavior by minimizing the distance between the agent's plan and the plan expected by the human. To this end, we learn a mapping between plan distances (distances between expected and agent plans) and human's plan scoring scheme. The plan generation process uses this learned model as a heuristic. We demonstrate the effectiveness of our approach in a delivery robot domain.  more » « less
Award ID(s):
1844524
NSF-PAR ID:
10105324
Author(s) / Creator(s):
; ; ; ; ;
Date Published:
Journal Name:
AAMAS Conference proceedings
ISSN:
2523-5699
Page Range / eLocation ID:
2075-2077
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Expert decision makers are starting to rely on data-driven automated agents to assist them with various tasks. For this collaboration to perform properly, the human decision maker must have a mental model of when and when not to rely on the agent. In this work, we aim to ensure that human decision makers learn a valid mental model of the agent's strengths and weaknesses. To accomplish this goal, we propose an exemplar-based teaching strategy where humans solve a set of selected examples and with our help generalize from them to the domain. We present a novel parameterization of the human's mental model of the AI that applies a nearest neighbor rule in local regions surrounding the teaching examples. Using this model, we derive a near-optimal strategy for selecting a representative teaching set. We validate the benefits of our teaching strategy on a multi-hop question answering task with an interpretable AI model using crowd workers. We find that when workers draw the right lessons from the teaching stage, their task performance improves. We furthermore validate our method on a set of synthetic experiments. 
    more » « less
  2. The functions of an autonomous system can generally be partitioned into those concerned with perception and those concerned with action. Perception builds and maintains an internal model of the world (i.e., the system's environment) that is used to plan and execute actions to accomplish a goal established by human supervisors. Accordingly, assurance decomposes into two parts: a) ensuring that the model is an accurate representation of the world as it changes through time and b) ensuring that the actions are safe (and e ective), given the model. Both perception and action may employ AI, including machine learning (ML), and these present challenges to assurance. However, it is usually feasible to guard the actions with traditionally engineered and assured monitors, and thereby ensure safety, given the model. Thus, the model becomes the central focus for assurance. We propose an architecture and methods to ensure the accuracy of models derived from sensors whose interpretation uses AI and ML. Rather than derive the model from sensors bottom-up, we reverse the process and use the model to predict sensor interpretation. Small prediction errors indicate the world is evolving as expected and the model is updated accordingly. Large prediction errors indicate surprise, which may be due to errors in sensing or interpretation, or unexpected changes in the world (e.g., a pedestrian steps into the road). The former initiate error masking or recovery, while the latter requires revision to the model. Higher-level AI functions assist in diagnosis and execution of these tasks. Although this two-level architecture where the lower level does \predictive processing" and the upper performs more re ective tasks, both focused on maintenance of a world model, is derived by engineering considerations, it also matches a widely accepted theory of human cognition. 
    more » « less
  3. Human-AI collaboration is an increasingly commonplace part of decision-making in real world applications. However, how humans behave when collaborating with AI is not well understood. We develop metacognitive bandits, a computational model of a human's advice-seeking behavior when working with an AI. The model describes a person's metacognitive process of deciding when to rely on their own judgment and when to solicit the advice of the AI. It also accounts for the difficulty of each trial in making the decision to solicit advice. We illustrate that the metacognitive bandit makes decisions similar to humans in a behavioral experiment. We also demonstrate that algorithm aversion, a widely reported bias, can be explained as the result of a quasi-optimal sequential decision-making process. Our model does not need to assume any prior biases towards AI to produce this behavior. 
    more » « less
  4. Connected Autonomous Vehicles (CAVs) are expected to enable reliable and efficient transportation systems. Most motion planning algorithms for multi-agent systems are not completely safe because they implicitly assume that all vehicles/agents will execute the expected plan with a small error. This assumption, however, is hard to keep for CAVs since they may have to slow down (e.g., to yield to a jaywalker) or are forced to stop (e.g. break down), sometimes even without a notice. Responsibility-Sensitive Safety (RSS) defines a set of safety rules for each driving scenario to ensure that a vehicle will not cause an accident irrespective of other vehicles' behavior. RSS rules, however, are hard to evaluate for merge, intersection, and unstructured road scenarios. In addition, deadlock situations can happen that are not considered by the RSS. In this paper, we propose a generic version of RSS rules for CAVs that can be applied to any driving scenario. We integrate the proposed RSS rules with the CAV's motion planning algorithm to enable cooperative driving of CAVs. Our approach can also detect and resolve deadlocks in a decentralized manner. We have conducted experiments to verify that a CAV does not cause an accident no matter when other CAVs slow down or stop. We also showcase our deadlock detection and resolution mechanism. Finally, we compare the average velocity and fuel consumption of vehicles when they drive autonomously but not connected with the case that they are connected. 
    more » « less
  5. In human-aware planning systems, a planning agent might need to explain its plan to a human user when that plan appears to be non-feasible or sub-optimal. A popular approach, called model reconciliation, has been proposed as a way to bring the model of the human user closer to the agent’s model. To do so, the agent provides an explanation that can be used to update the model of human such that the agent’s plan is feasible or optimal to the human user. Existing approaches to solve this problem have been based on automated planning methods and have been limited to classical planning problems only. In this paper, we approach the model reconciliation problem from a different perspective, that of knowledge representation and reasoning, and demonstrate that our approach can be applied not only to classical planning problems but also hybrid systems planning problems with durative actions and events/processes. In particular, we propose a logic-based framework for explanation generation, where given a knowledge base KBa (of an agent) and a knowledge base KBh (of a human user), each encoding their knowledge of a planning problem, and that KBa entails a query q (e.g., that a proposed plan of the agent is valid), the goal is to identify an explanation ε ⊆ KBa such that when it is used to update KBh, then the updated KBh also entails q. More specifically, we make the following contributions in this paper: (1) We formally define the notion of logic-based explanations in the context of model reconciliation problems; (2) We introduce a number of cost functions that can be used to reflect preferences between explanations; (3) We present algorithms to compute explanations for both classical planning and hybrid systems planning problems; and (4) We empirically evaluate their performance on such problems. Our empirical results demonstrate that, on classical planning problems, our approach is faster than the state of the art when the explanations are long or when the size of the knowledge base is small (e.g., the plans to be explained are short). They also demonstrate that our approach is efficient for hybrid systems planning problems. Finally, we evaluate the real-world efficacy of explanations generated by our algorithms through a controlled human user study, where we develop a proof-of-concept visualization system and use it as a medium for explanation communication. 
    more » « less