skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1845364

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. null (Ed.)
  4. Autonomous underwater robots working with teams of human divers may need to distinguish between different divers, e.g., to recognize a lead diver or to follow a specific team member. This paper describes a technique that enables autonomous underwater robots to track divers in real time as well as to reidentify them. The approach is an extension of Simple Online Realtime Tracking (SORT) with an appearance metric (deep SORT). Initial diver detection is performed with a custom CNN designed for realtime diver detection, and appearance features are subsequently extracted for each detected diver. Next, realtime tracking by-detection is performed with an extension of the deep SORT algorithm. We evaluate this technique on a series of videos of divers performing human-robot collaborative tasks and show that our methods result in more divers being accurately identified during tracking. We also discuss the practical considerations of applying multi-person tracking to on-board autonomous robot operations, and we consider how failure cases can be addressed during on-board tracking. 
    more » « less
  5. A wide range of human–robot collaborative applications in diverse domains, such as manufacturing, health care, the entertainment industry, and social interactions, require an autonomous robot to follow its human companion. Different working environments and applications pose diverse challenges by adding constraints on the choice of sensors, degree of autonomy, and dynamics of a person-following robot. Researchers have addressed these challenges in many ways and contributed to the development of a large body of literature. This paper provides a comprehensive overview of the literature by categorizing different aspects of person-following by autonomous robots. Also, the corresponding operational challenges are identified based on various design choices for ground, underwater, and aerial scenarios. In addition, state-of-the-art methods for perception, planning, control, and interaction are elaborately discussed and their applicability in varied operational scenarios is presented. Then some of the prominent methods are qualitatively compared, corresponding practicalities are illustrated, and their feasibility is analyzed for various use cases. Furthermore, several prospective application areas are identified, and open problems are highlighted for future research. 
    more » « less
  6. In this paper, we propose a novel method for underwater robot-to-human communication using the motion of the robot as “body language”. To evaluate this system, we develop simulated examples of the system's body language gestures, called kinemes, and compare them to a baseline system using flashing colored lights through a user study. Our work shows evidence that motion can be used as a successful communication vector which is accurate, easy to learn, and quick enough to be used, all without requiring any additional hardware to be added to our platform. We thus contribute to “closing the loop” for human-robot interaction underwater by proposing and testing this system, suggesting a library of possible body language gestures for underwater robots, and offering insight on the design of nonverbal robot-to-human communication methods. 
    more » « less