Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Most of today’s educators are in no shortage of digital and online learning technologies available at their fingertips, ranging from Learning Management Systems such as Canvas, Blackboard, or Moodle, online meeting tools, online homework, and tutoring systems, exam proctoring platforms, computer simulations, and even virtual reality/augmented reality technologies. Furthermore, with the rapid development and wide availability of generative artificial intelligence (GenAI) services such as ChatGPT, we are just at the beginning of harnessing their potential to transform higher education. Yet, facing the large number of available options provided by cutting-edge technology, an imminent question on the mind of most educators is the following: how should I choose the technologies and integrate them into my teaching process so that they would best support student learning? We contemplate over these types of important and timely questions and share our reflections on evidence-based approaches to harnessing digital learning tools using a Self-regulated Engaged Learning Framework we have employed in our research in physics education that can be valuable for educators in other disciplines.more » « lessFree, publicly-accessible full text available March 1, 2026
-
This study examines the feasibility and potential advantages of using large language models, in particular GPT-4o, to perform partial credit grading of large numbers of student written responses to introductory level physics problems. Students were instructed to write down verbal explanations of their reasoning process when solving one conceptual and two numerical calculation problems on two exams. The explanations were then graded according to a three-item rubric with each item graded as binary (1 or 0). We first demonstrate that machine grading using GPT-4o with no examples or reference answers can reliably agree with human graders in 70%–80% of all cases, which is equal to or higher than the level at which two human graders agree with each other. Two methods are essential for achieving this level of accuracy: (i) Adding explanation language to each rubric item that targets the errors of initial machine grading. (ii) Running the grading process 5 times and taking the most frequent outcome. Next, we show that the variation in outcomes across five machine grading attempts can serve as a grading confidence index. The index allows a human expert to identify of all potentially incorrect gradings by reviewing just 10%–15% of all responses with the highest variation. Finally, we show that it is straightforward to use GPT-4o to write a clear and detailed explanation of the partial credit grading outcome. Those explanations can be used as feedback for students, which will allow students to understand their grades and raise different opinions when necessary. Almost all feedback messages generated were rated three or above on a five-point scale by two instructors who had taught the course multiple times. The entire grading and feedback generating process costs roughly $5 per 100 student answers, which shows immense promise for automating labor-intensive grading process through a combination of machine grading with human input and supervision. Published by the American Physical Society2025more » « lessFree, publicly-accessible full text available March 1, 2026
-
The current study measures the extent to which students’ self-regulated learning tactics and learning outcomes change as the result of a deliberate, data-driven improvement in the learning design of mastery-based online learning modules. In the original design, students were required to attempt the assessment once before being allowed to access the learning material. The improved design gave students the choice to skip the first attempt and access the learning material directly. Student learning tactics were measured using a multi-level clustering and process mining algorithm, and a quasi-experiment design was implemented to remove or reduce differences in extraneous factors, including content being covered, time of implementation, and naturally occurring fluctuations in student learning tactics. The analysis suggests that most students who chose to skip the first attempt were effectively self-regulating their learning and were thus successful in learning from the instructional materials. Students who would have failed the first attempt were much more likely to skip it than those who would have passed the first attempt. The new design also resulted in a small improvement in learning outcome and median learning time. The study demonstrates the creation of a closed loop between learning design and learning analytics: first, using learning analytics to inform improvements to the learning design, then assessing the effectiveness and impact of the improvements.more » « less
-
In an earlier study we showed that small amounts of extra credit offered for early progress on online homework assignments can reduce cramming behavior in introductory physics students. This work expands on the prior study by implementing a planning prompt intervention inspired by Yeomans and Reich's similar treatment. In the prompt we asked students to what degree they intended to earn extra credit offered for early work on the module sequence, and what their plan was to realize their intentions. The survey was assigned for ordinary course credit and due several days before the first extra credit deadline. We found that students who completed the prompt earned on average 0.6 more extra credit points and completed the modules an average of 1.1 days earlier compared to a previous semester. We detect the impact of the survey by creating a multilinear model based on data from students exposed to the intervention as well as students in a previous semester. Data from five homework sequences are included in the model to account for differences between the two semesters that cannot be attributed to the planning prompt intervention.more » « less
An official website of the United States government
