skip to main content

Search for: All records

Award ID contains: 1845444

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In recent decades, the advance of information technology and abundant personal data facilitate the application of algorithmic personalized pricing. However, this leads to the growing concern of potential violation of privacy because of adversarial attack. To address the privacy issue, this paper studies a dynamic personalized pricing problem with unknown nonparametric demand models under data privacy protection. Two concepts of data privacy, which have been widely applied in practices, are introduced: central differential privacy (CDP) and local differential privacy (LDP), which is proved to be stronger than CDP in many cases. We develop two algorithms that make pricing decisions and learn the unknown demand on the fly while satisfying the CDP and LDP guarantee, respectively. In particular, for the algorithm with CDP guarantee, the regret is proved to be at most [Formula: see text]. Here, the parameter T denotes the length of the time horizon, d is the dimension of the personalized information vector, and the key parameter [Formula: see text] measures the strength of privacy (smaller ε indicates a stronger privacy protection). Conversely, for the algorithm with LDP guarantee, its regret is proved to be at most [Formula: see text], which is near optimal as we prove a lowermore »bound of [Formula: see text] for any algorithm with LDP guarantee.« less
    Free, publicly-accessible full text available August 1, 2023
  2. A sequential design problem for rank aggregation is commonly encountered in psychology, politics, marketing, sports, etc. In this problem, a decision maker is responsible for ranking K items by sequentially collecting noisy pairwise comparisons from judges. The decision maker needs to choose a pair of items for comparison in each step, decide when to stop data collection, and make a final decision after stopping based on a sequential flow of information. Because of the complex ranking structure, existing sequential analysis methods are not suitable. In this paper, we formulate the problem under a Bayesian decision framework and propose sequential procedures that are asymptotically optimal. These procedures achieve asymptotic optimality by seeking a balance between exploration (i.e., finding the most indistinguishable pair of items) and exploitation (i.e., comparing the most indistinguishable pair based on the current information). New analytical tools are developed for proving the asymptotic results, combining advanced change of measure techniques for handling the level crossing of likelihood ratios and classic large deviation results for martingales, which are of separate theoretical interest in solving complex sequential design problems. A mirror-descent algorithm is developed for the computation of the proposed sequential procedures.
    Free, publicly-accessible full text available August 1, 2023
  3. In this paper, we study the learning problem in contextual search, which is motivated by applications such as crowdsourcing and personalized medicine experiments. In particular, for a sequence of arriving context vectors, with each context associated with an underlying value, the decision maker either makes a query at a certain point or skips the context. The decision maker will only observe the binary feedback on the relationship between the query point and the value associated with the context. We study a probably approximately correct learning setting, where the goal is to learn the underlying mean value function in context with a minimum number of queries. To address this challenge, we propose a trisection search approach combined with a margin-based active learning method. We show that the algorithm only needs to make [Formula: see text] queries to achieve an ε-estimation accuracy. This sample complexity significantly reduces the required sample complexity in the passive setting where neither sample skipping nor query selection is allowed, which is at least [Formula: see text]. This paper was accepted by J. George Shanthikumar, data science.
    Free, publicly-accessible full text available July 1, 2023
  4. This paper studies a dynamic pricing problem under model misspecification. To characterize model misspecification, we adopt the ε-contamination model—the most fundamental model in robust statistics and machine learning. In particular, for a selling horizon of length T, the online ε-contamination model assumes that demands are realized according to a typical unknown demand function only for [Formula: see text] periods. For the rest of [Formula: see text] periods, an outlier purchase can happen with arbitrary demand functions. The challenges brought by the presence of outlier customers are mainly due to the fact that arrivals of outliers and their exhibited demand behaviors are completely arbitrary, therefore calling for robust estimation and exploration strategies that can handle any outlier arrival and demand patterns. We first consider unconstrained dynamic pricing without any inventory constraint. In this case, we adopt the Follow-the-Regularized-Leader algorithm to hedge against outlier purchase behavior. Then, we introduce inventory constraints. When the inventory is insufficient, we study a robust bisection-search algorithm to identify the clearance price—that is, the price at which the initial inventory is expected to clear at the end of T periods. Finally, we study the general dynamic pricing case, where a retailer has no clue whether the inventorymore »is sufficient or not. In this case, we design a meta-algorithm that combines the previous two policies. All algorithms are fully adaptive, without requiring prior knowledge of the outlier proportion parameter ε. Simulation study shows that our policy outperforms existing policies in the literature.« less
    Free, publicly-accessible full text available April 1, 2023
  5. The prevalence of e-commerce has made customers’ detailed personal information readily accessible to retailers, and this information has been widely used in pricing decisions. When using personalized information, the question of how to protect the privacy of such information becomes a critical issue in practice. In this paper, we consider a dynamic pricing problem over T time periods with an unknown demand function of posted price and personalized information. At each time t, the retailer observes an arriving customer’s personal information and offers a price. The customer then makes the purchase decision, which will be utilized by the retailer to learn the underlying demand function. There is potentially a serious privacy concern during this process: a third-party agent might infer the personalized information and purchase decisions from price changes in the pricing system. Using the fundamental framework of differential privacy from computer science, we develop a privacy-preserving dynamic pricing policy, which tries to maximize the retailer revenue while avoiding information leakage of individual customer’s information and purchasing decisions. To this end, we first introduce a notion of anticipating [Formula: see text]-differential privacy that is tailored to the dynamic pricing problem. Our policy achieves both the privacy guarantee and the performancemore »guarantee in terms of regret. Roughly speaking, for d-dimensional personalized information, our algorithm achieves the expected regret at the order of [Formula: see text] when the customers’ information is adversarially chosen. For stochastic personalized information, the regret bound can be further improved to [Formula: see text]. This paper was accepted by J. George Shanthikumar, big data analytics.« less
  6. Distributionally robust optimization (DRO) has been introduced for solving stochastic programs in which the distribution of the random variables is unknown and must be estimated by samples from that distribution. A key element of DRO is the construction of the ambiguity set, which is a set of distributions that contains the true distribution with a high probability. Assuming that the true distribution has a probability density function, we propose a class of ambiguity sets based on confidence bands of the true density function. As examples, we consider the shape-restricted confidence bands and the confidence bands constructed with a kernel density estimation technique. The former allows us to incorporate the prior knowledge of the shape of the underlying density function (e.g., unimodality and monotonicity), and the latter enables us to handle multidimensional cases. Furthermore, we establish the convergence of the optimal value of DRO to that of the underlying stochastic program as the sample size increases. The DRO with our ambiguity set involves functional decision variables and infinitely many constraints. To address this challenge, we apply duality theory to reformulate the DRO to a finite-dimensional stochastic program, which is amenable to a stochastic subgradient scheme as a solution method.
  7. We study the dynamic assortment planning problem, where for each arriving customer, the seller offers an assortment of substitutable products and the customer makes the purchase among offered products according to an uncapacitated multinomial logit (MNL) model. Because all the utility parameters of the MNL model are unknown, the seller needs to simultaneously learn customers’ choice behavior and make dynamic decisions on assortments based on the current knowledge. The goal of the seller is to maximize the expected revenue, or, equivalently, to minimize the expected regret. Although dynamic assortment planning problem has received an increasing attention in revenue management, most existing policies require the estimation of mean utility for each product and the final regret usually involves the number of products [Formula: see text]. The optimal regret of the dynamic assortment planning problem under the most basic and popular choice model—the MNL model—is still open. By carefully analyzing a revenue potential function, we develop a trisection-based policy combined with adaptive confidence bound construction, which achieves an item-independent regret bound of [Formula: see text], where [Formula: see text] is the length of selling horizon. We further establish the matching lower bound result to show the optimality of our policy. There aremore »two major advantages of the proposed policy. First, the regret of all our policies has no dependence on [Formula: see text]. Second, our policies are almost assumption-free: there is no assumption on mean utility nor any “separability” condition on the expected revenues for different assortments. We also extend our trisection search algorithm to capacitated MNL models and obtain the optimal regret [Formula: see text] (up to logrithmic factors) without any assumption on the mean utility parameters of items.« less