skip to main content


Title: Asymptotically Optimal Sequential Design for Rank Aggregation
A sequential design problem for rank aggregation is commonly encountered in psychology, politics, marketing, sports, etc. In this problem, a decision maker is responsible for ranking K items by sequentially collecting noisy pairwise comparisons from judges. The decision maker needs to choose a pair of items for comparison in each step, decide when to stop data collection, and make a final decision after stopping based on a sequential flow of information. Because of the complex ranking structure, existing sequential analysis methods are not suitable. In this paper, we formulate the problem under a Bayesian decision framework and propose sequential procedures that are asymptotically optimal. These procedures achieve asymptotic optimality by seeking a balance between exploration (i.e., finding the most indistinguishable pair of items) and exploitation (i.e., comparing the most indistinguishable pair based on the current information). New analytical tools are developed for proving the asymptotic results, combining advanced change of measure techniques for handling the level crossing of likelihood ratios and classic large deviation results for martingales, which are of separate theoretical interest in solving complex sequential design problems. A mirror-descent algorithm is developed for the computation of the proposed sequential procedures.  more » « less
Award ID(s):
1845444
NSF-PAR ID:
10376273
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematics of Operations Research
Volume:
47
Issue:
3
ISSN:
0364-765X
Page Range / eLocation ID:
2310 to 2332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a simulation-based ranking and selection (R&S) problem with input uncertainty, in which unknown input distributions can be estimated using input data arriving in batches of varying sizes over time. Each time a batch arrives, additional simulations can be run using updated input distribution estimates. The goal is to confidently identify the best design after collecting as few batches as possible. We first introduce a moving average estimator for aggregating simulation outputs generated under heterogenous input distributions. Then, based on a sequential elimination framework, we devise two major R&S procedures by establishing exact and asymptotic confidence bands for the estimator. We also extend our procedures to the indifference zone setting, which helps save simulation effort for practical usage. Numerical results show the effectiveness and necessity of our procedures in controlling error from input uncertainty. Moreover, the efficiency can be further boosted through optimizing the “drop rate” parameter, which is the proportion of past simulation outputs to discard, of the moving average estimator. 
    more » « less
  2. A key and challenging step toward personalized/precision medicine is the ability to redesign dose-finding clinical trials. This work studies a problem of fully response-adaptive Bayesian design of phase II dose-finding clinical trials with patient information, where the decision maker seeks to identify the right dose for each patient type (often defined as an effective target dose for each group of patients) by minimizing the expected (over patient types) variance of the right dose. We formulate this problem by a stochastic dynamic program and exploit a few properties of this class of learning problems. Because the optimal solution is intractable, we propose an approximate policy by an adaptation of a one-step look-ahead framework. We show the optimality of the proposed policy for a setting with homogeneous patients and two doses and find its asymptotic rate of sampling. We adapt a number of commonly applied allocation policies in dose-finding clinical trials, such as posterior adaptive sampling, and test their performance against our proposed policy via extensive simulations with synthetic and real data. Our numerical analyses provide insights regarding the connection between the structure of the dose-response curve for each patient type and the performance of allocation policies. This paper provides a practical framework for the Food and Drug Administration and pharmaceutical companies to transition from the current phase II procedures to the era of personalized dose-finding clinical trials. Funding: This research is supported by the National Science Foundation [Grant 1651912]. Supplemental Material: The online appendices are available at https://doi.org/10.1287/serv.2022.0306 . 
    more » « less
  3. We revisit the well-studied problem of designing mechanisms for one-sided matching markets, where a set of n agents needs to be matched to a set of n heterogeneous items. Each agent i has a value vij for each item j, and these values are private information that the agents may misreport if doing so leads to a preferred outcome. Ensuring that the agents have no incentive to misreport requires a careful design of the matching mechanism, and mechanisms proposed in the literature mitigate this issue by eliciting only the ordinal preferences of the agents, i.e., their ranking of the items from most to least preferred. However, the efficiency guarantees of these mechanisms are based only on weak measures that are oblivious to the underlying values. In this paper we achieve stronger performance guarantees by introducing a mechanism that truthfully elicits the full cardinal preferences of the agents, i.e., all of the vij values. We evaluate the performance of this mechanism using the much more demanding Nash bargaining solution as a benchmark, and we prove that our mechanism significantly outperforms all ordinal mechanisms (even non-truthful ones). To prove our approximation bounds, we also study the population monotonicity of the Nash bargaining solution in the context of matching markets, providing both upper and lower bounds which are of independent interest. 
    more » « less
  4. Artificial intelligence (AI) has the potential to improve human decision-making by providing decision recommendations and problem-relevant information to assist human decision-makers. However, the full realization of the potential of human–AI collaboration continues to face several challenges. First, the conditions that support complementarity (i.e., situations in which the performance of a human with AI assistance exceeds the performance of an unassisted human or the AI in isolation) must be understood. This task requires humans to be able to recognize situations in which the AI should be leveraged and to develop new AI systems that can learn to complement the human decision-maker. Second, human mental models of the AI, which contain both expectations of the AI and reliance strategies, must be accurately assessed. Third, the effects of different design choices for human-AI interaction must be understood, including both the timing of AI assistance and the amount of model information that should be presented to the human decision-maker to avoid cognitive overload and ineffective reliance strategies. In response to each of these three challenges, we present an interdisciplinary perspective based on recent empirical and theoretical findings and discuss new research directions. 
    more » « less
  5. In designing complex systems, systems engineers strive to turn an existing situation into a situation that is most preferred. A rational decision maker would choose the alternative that maximizes the expected utility of the existing situation, but there are significant computational challenges to this approach. To overcome these challenges, most decision makers revert to heuristics. In this paper, we propose a conceptual framework for heuristics in design. A preliminary empirical study of designers for a robotics design problem was conducted to observe how participants apply heuristics. Participants having at least 2 years of experience designing robots were recruited to partake in a robotics design session in which participant were given 45 minutes to work on a design problem. A preliminary heuristics extraction method was developed, and the identified heuristics were studied to find trends within the overall set. These trends were the basis of a taxonomy of heuristics consisting of three initial classification methods: design phase, field of study, and action intent. The heuristics and classifications are presented, along with the challenges from extracting heuristics and recommendations for future work to further research design heuristics and to improve the method for extraction. 
    more » « less