skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Asymptotically Optimal Sequential Design for Rank Aggregation
A sequential design problem for rank aggregation is commonly encountered in psychology, politics, marketing, sports, etc. In this problem, a decision maker is responsible for ranking K items by sequentially collecting noisy pairwise comparisons from judges. The decision maker needs to choose a pair of items for comparison in each step, decide when to stop data collection, and make a final decision after stopping based on a sequential flow of information. Because of the complex ranking structure, existing sequential analysis methods are not suitable. In this paper, we formulate the problem under a Bayesian decision framework and propose sequential procedures that are asymptotically optimal. These procedures achieve asymptotic optimality by seeking a balance between exploration (i.e., finding the most indistinguishable pair of items) and exploitation (i.e., comparing the most indistinguishable pair based on the current information). New analytical tools are developed for proving the asymptotic results, combining advanced change of measure techniques for handling the level crossing of likelihood ratios and classic large deviation results for martingales, which are of separate theoretical interest in solving complex sequential design problems. A mirror-descent algorithm is developed for the computation of the proposed sequential procedures.  more » « less
Award ID(s):
1845444
PAR ID:
10376273
Author(s) / Creator(s):
; ;
Date Published:
Journal Name:
Mathematics of Operations Research
Volume:
47
Issue:
3
ISSN:
0364-765X
Page Range / eLocation ID:
2310 to 2332
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We consider a simulation-based ranking and selection (R&S) problem with input uncertainty, in which unknown input distributions can be estimated using input data arriving in batches of varying sizes over time. Each time a batch arrives, additional simulations can be run using updated input distribution estimates. The goal is to confidently identify the best design after collecting as few batches as possible. We first introduce a moving average estimator for aggregating simulation outputs generated under heterogenous input distributions. Then, based on a sequential elimination framework, we devise two major R&S procedures by establishing exact and asymptotic confidence bands for the estimator. We also extend our procedures to the indifference zone setting, which helps save simulation effort for practical usage. Numerical results show the effectiveness and necessity of our procedures in controlling error from input uncertainty. Moreover, the efficiency can be further boosted through optimizing the “drop rate” parameter, which is the proportion of past simulation outputs to discard, of the moving average estimator. 
    more » « less
  2. Bae, K.-H.; Feng, B.; Kim, S.; Lazarova-Molnar, S.; Zheng, Z.; Roeder, T.; Thiesing, R. (Ed.)
    In the subset-selection approach to ranking and selection, a decision-maker seeks a subset of simulated systems that contains the best with high probability. We present a new, generalized framework for constructing these subsets and demonstrate that some existing subset-selection procedures are situated within this framework. The subsets are built by calculating, for each system, a minimum standardized discrepancy between the observed performances and the space of problem instances for which that system is the best. A system’s minimum standardized discrepancy is then compared to a cutoff to determine whether the system is included in the subset. We examine the problem of finding the tightest statistically valid cutoff for each system and draw connections between our approach and other subset-selection methodologies. Simulation experiments demonstrate how the screening power and subset size are affected by the choice of standardized discrepancy. 
    more » « less
  3. In designing complex systems, systems engineers strive to turn an existing situation into a situation that is most preferred. A rational decision maker would choose the alternative that maximizes the expected utility of the existing situation, but there are significant computational challenges to this approach. To overcome these challenges, most decision makers revert to heuristics. In this paper, we propose a conceptual framework for heuristics in design. A preliminary empirical study of designers for a robotics design problem was conducted to observe how participants apply heuristics. Participants having at least 2 years of experience designing robots were recruited to partake in a robotics design session in which participant were given 45 minutes to work on a design problem. A preliminary heuristics extraction method was developed, and the identified heuristics were studied to find trends within the overall set. These trends were the basis of a taxonomy of heuristics consisting of three initial classification methods: design phase, field of study, and action intent. The heuristics and classifications are presented, along with the challenges from extracting heuristics and recommendations for future work to further research design heuristics and to improve the method for extraction. 
    more » « less
  4. Artificial intelligence (AI) has the potential to improve human decision-making by providing decision recommendations and problem-relevant information to assist human decision-makers. However, the full realization of the potential of human–AI collaboration continues to face several challenges. First, the conditions that support complementarity (i.e., situations in which the performance of a human with AI assistance exceeds the performance of an unassisted human or the AI in isolation) must be understood. This task requires humans to be able to recognize situations in which the AI should be leveraged and to develop new AI systems that can learn to complement the human decision-maker. Second, human mental models of the AI, which contain both expectations of the AI and reliance strategies, must be accurately assessed. Third, the effects of different design choices for human-AI interaction must be understood, including both the timing of AI assistance and the amount of model information that should be presented to the human decision-maker to avoid cognitive overload and ineffective reliance strategies. In response to each of these three challenges, we present an interdisciplinary perspective based on recent empirical and theoretical findings and discuss new research directions. 
    more » « less
  5. We consider the problem of finding a system with the best primary performance measure among a finite number of simulated systems in the presence of subjective stochastic constraints on secondary performance measures. When no feasible system exists, the decision maker may be willing to relax some constraint thresholds. We take multiple threshold values for each constraint as a user’s input and propose indifference-zone procedures that perform the phases of feasibility check and selection-of-the-best sequentially or simultaneously. Given that there is no change in the underlying simulated systems, our procedures recycle simulation observations to conduct feasibility checks across all potential thresholds. We prove that the proposed procedures yield the best system in the most desirable feasible region possible with at least a pre-specified probability. Our experimental results show that our procedures perform well with respect to the number of observations required to make a decision, as compared with straight-forward procedures that repeatedly solve the problem for each set of constraint thresholds, and that our simultaneously-running procedure provides the best overall performance. 
    more » « less