The pervasive loss of biodiversity in the Anthropocene necessitates rapid assessments of ecosystems to understand how they will respond to anthropogenic environmental change. Many studies have sought to describe the adaptive capacity (AC) of individual species, a measure that encompasses a species’ ability to respond and adapt to change. Only those adaptive mechanisms that can be used over the next few decades (e.g. via novel interactions, behavioural changes, hybridization, migration, etc.) are relevant to the timescale set by the rapid changes of the Anthropocene. The impacts of species loss cascade through ecosystems, yet few studies integrate the capacity of ecological networks to adapt to change with the ACs of its species. Here, we discuss three ecosystems and how their ecological networks impact the AC of species and vice versa. A more holistic perspective that considers the AC of species with respect to their ecological interactions and functions will provide more predictive power and a deeper understanding of what factors are most important to a species’ survival. We contend that the AC of a species, combined with its role in ecosystem function and stability, must guide decisions in assigning ‘risk’ and triaging biodiversity loss in the Anthropocene. This article is part of the theme issue ‘Ecological complexity and the biosphere: the next 30 years’.
more »
« less
Symbiosis and the Anthropocene
Abstract Recent human activity has profoundly transformed Earth biomes on a scale and at rates that are unprecedented. Given the central role of symbioses in ecosystem processes, functions, and services throughout the Earth biosphere, the impacts of human-driven change on symbioses are critical to understand. Symbioses are not merely collections of organisms, but co-evolved partners that arise from the synergistic combination and action of different genetic programs. They function with varying degrees of permanence and selection as emergent units with substantial potential for combinatorial and evolutionary innovation in both structure and function. Following an articulation of operational definitions of symbiosis and related concepts and characteristics of the Anthropocene, we outline a basic typology of anthropogenic change (AC) and a conceptual framework for how AC might mechanistically impact symbioses with select case examples to highlight our perspective. We discuss surprising connections between symbiosis and the Anthropocene, suggesting ways in which new symbioses could arise due to AC, how symbioses could be agents of ecosystem change, and how symbioses, broadly defined, of humans and “farmed” organisms may have launched the Anthropocene. We conclude with reflections on the robustness of symbioses to AC and our perspective on the importance of symbioses as ecosystem keystones and the need to tackle anthropogenic challenges as wise and humble stewards embedded within the system.
more »
« less
- PAR ID:
- 10390242
- Publisher / Repository:
- Springer Science + Business Media
- Date Published:
- Journal Name:
- Symbiosis
- Volume:
- 84
- Issue:
- 3
- ISSN:
- 0334-5114
- Format(s):
- Medium: X Size: p. 239-270
- Size(s):
- p. 239-270
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Ocean ecosystems are experiencing unprecedented rates of climate and anthropogenic change, which can often initiate stress in marine organisms. Symbioses, or associations between different organisms, are plentiful in the ocean and could play a significant role in facilitating organismal adaptations to stressful ocean conditions. This article reviews current knowledge about the role of symbiosis in marine organismal acclimation and adaptation. It discusses stress and adaptations in symbioses from coral reef ecosystems, which are among the most affected environments in the ocean, including the relationships between corals and microalgae, corals and bacteria, anemones and clownfish, and cleaner fish and client fish. Despite the importance of this subject, knowledge of how marine organisms adapt to stress is still limited, and there are vast opportunities for research and technological development in this area. Attention to this subject will enhance our understanding of the capacity of symbioses to alleviate organismal stress in the oceans.more » « less
-
null (Ed.)Symbiotic relationships enable partners to thrive and survive in habitats where they would either not be as successful, or potentially not exist, without the symbiosis. The coral reef ecosystem, and its immense biodiversity, relies on the symbioses between cnidarians (e.g., scleractinian corals, octocorals, sea anemones, jellyfish) and multiple organisms including dinoflagellate algae (family Symbiodiniaceae), bivalves, crabs, shrimps, and fishes. In this review, we discuss the ramifications of whether coral reef cnidarian symbioses are obligatory, whereby at least one of the partners must be in the symbiosis in order to survive or are facultative. Furthermore, we cover the consequences of cnidarian symbioses exhibiting partner flexibility or fidelity. Fidelity, where a symbiotic partner can only engage in symbiosis with a subset of partners, may be absolute or context dependent. Current literature demonstrates that many cnidarian symbioses are highly obligative and appear to exhibit absolute fidelity. Consequently, for many coral reef cnidarian symbioses, surviving changing environmental conditions will depend on the robustness and potential plasticity of the existing host-symbiont(s) combination. If environmental conditions detrimentally affect even one component of this symbiotic consortium, it may lead to a cascade effect and the collapse of the entire symbiosis. Symbiosis is at the heart of the coral reef ecosystem, its existence, and its high biodiversity. Climate change may cause the demise of some of the cnidarian symbioses, leading to subsequent reduction in biodiversity on coral reefs.more » « less
-
Abstract Tropical corals construct the three-dimensional framework for one of the most diverse ecosystems on the planet, providing habitat to a plethora of species across taxa. However, these ecosystem engineers are facing unprecedented challenges, such as increasing disease prevalence and marine heatwaves associated with anthropogenic global change. As a result, major declines in coral cover and health are being observed across the world's oceans, often due to the breakdown of coral-associated symbioses. Here, we review the interactions between the major symbiotic partners of the coral holobiont—the cnidarian host, algae in the family Symbiodiniaceae, and the microbiome—that influence trait variation, including the molecular mechanisms that underlie symbiosis and the resulting physiological benefits of different microbial partnerships. In doing so, we highlight the current framework for the formation and maintenance of cnidarian–Symbiodiniaceae symbiosis, and the role that immunity pathways play in this relationship. We emphasize that understanding these complex interactions is challenging when you consider the vast genetic variation of the cnidarian host and algal symbiont, as well as their highly diverse microbiome, which is also an important player in coral holobiont health. Given the complex interactions between and among symbiotic partners, we propose several research directions and approaches focused on symbiosis model systems and emerging technologies that will broaden our understanding of how these partner interactions may facilitate the prediction of coral holobiont phenotype, especially under rapid environmental change.more » « less
-
Functional genomics is a powerful approach for uncovering molecular mechanisms underlying complex biological processes by linking genetic changes to observable phenotypes. In the context of algal symbiosis, this framework offers significant potential for advancing our understanding of the molecular interactions between marine dinoflagellates and their cnidarian hosts, such as corals—organisms that are foundational to marine ecosystems and biodiversity. As coral bleaching and reef degradation intensify due to environmental stressors, novel strategies are urgently needed to enhance the resilience of these symbiotic partnerships. This opinion piece explores emerging directions in functional genomics as applied to coral–algal symbiosis, with a focus on uncovering the molecular pathways that govern photosynthesis and stress tolerance. We discuss the challenges and opportunities in applying functional genomics to support coral health, improve ecosystem resilience, and inform biotechnological applications in agriculture and medicine. Together, these insights posit the potential for engineered symbioses as a needed focus in mitigating biodiversity loss and supporting sustainable ecosystem management in the face of accelerating environmental change.more » « less
An official website of the United States government
