skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 1846942

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Let (X, ω) be a Kähler manifold and ψ : R → R+ be a concave weight. We show that Hω admits a natural metric dψ whose completion is the low energy space Eψ , introduced by Guedj–Zeriahi. As dψ is not induced by a Finsler metric, the main difficulty is to show that the triangle inequality holds. We study properties of the resulting complete metric space (Eψ , dψ ). 
    more » « less
  2. In this paper, we show that the low energy spaces in the prescribed singularity case Eψ (X, θ, φ) have a natural topology which is completely metrizable. This topology is stronger than convergence in capacity. 
    more » « less
  3. We obtain sharp inequalities between the large scale asymptotic of the J functional with respect to the d1 metric on the space of Kähler metrics. Applications regarding the initial value problem for geodesic rays are presented. 
    more » « less
  4. Given a compact Kähler manifold, we prove that all global isometries of the space of Kähler metrics are induced by biholomorphisms and anti-biholomorphisms of the manifold. In particular, there exist no global symmetries for Mabuchi’s metric. Moreover, we show that the Mabuchi completion does not even admit local symmetries. Closely related to these findings, we provide a large class of metric geodesic segments that cannot be extended at one end, exhibiting the first such examples in the literature. 
    more » « less